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ABSTRACT

Constraint Programming aims at the easy declaration and fast resolution of Constraint
Satisfaction Problems (CSPs) like course scheduling, radio link frequency assignment,
etc. To solve the problems, Constraint Programming is based on

» search methods and
* constraint propagation.
This dissertation contributes on both. Specifically:

1. We develop novel search methods that are based on new heuristics. These new
heuristics implement the gradual randomization of deterministic heuristics. We
create hybrid heuristics that exploit the advantages of both deterministic and random
heuristics.

2. We demonstrate how the MapReduce framework can be used for speeding up and
distributing the search of a CSP solution to all the available solvers-workers.

3. We highlight the advantages of relaxed constraint propagation levels like bounds
consistency in comparison to higher levels like arc consistency. \We propose nhew
relaxed constraint propagation levels, and we compare their performance to higher
propagation levels, both in theory and practice. We answer the question about when
it is worth to employ relaxed constraint propagation levels.

Our contributions were tested using mostly CSPs that occur in the real world and a wide
range of CSPs included in official Constraint Programming solvers competitions. We used
Naxos Solver as a practical open-source Constraint Programming solver to conduct our
experiments.

SUBJECT AREA: Artificial Intelligence, Constraint Satisfaction

KEYWORDS: search, heuristics, randomization, MapReduce, constraint propagation,
bounds consistency, maintaining arc consistency






NEPINAHWH

O Mpoypaupoatiopog pe Meplopiopovg (Constraint Programming) OTOCKOTIE OTNV
€UKOAN d1aTUTIWAN Kal YPryopn ETTIALCT TWV AeyOpEVWVY MpoPANudTwy IKkavoTtoinong
MNeplopiopwv (Constraint Satisfaction Problems — CSPS) 0Ttw¢ N KAtdoTpwan wPoAoyiwv
TIPOYPAUMATWY, N avABEDT GUXVOTATWY OE POSIOPWVIKOVUC OTABPOUC XWPIC TIOPEUPROAEC
METaEL TouC K.G. Mo TNV €TTIALCON TWV TIPORANUATWY, O MPOYPAUUATIOUOC PE MePIoPIoONC
Baailetal

* OTI¢ peBOdOoLC avalntnong (search methods) kai
« 01N d10d00N TEPIOPIOUWVY (constraint propagation).
H diatpiB autr) cLVEICPEPEL KOl 0TOUC U0 AUTOUC TTIVAWVEC. M0 CLYKEKPIPEVA:

1. Avamt0oo0ULUE KAIVOUPYIEG HEBOBOLC avalnTnaong Ttov Baacilovial o€ KAIVOTOUOUG
EVPETIKOVC KOVOVEG. Ol KOVOVEC aUTOI LAOTIOIOVV TN Babuiaia TuXAIOTIOINON TWV
VIETEPUIVIOTIKWVY EVPETIKWVY KOVOVWVY. AnUIoupyouue eva LPPISIO Pe OTOXO TNV EK-
METAAAELOTN TWV TIAEOVEKTNHATWY TOCO0 TWV VIETEPHUIVIOTIKWY 000 Kal TV TUXAiwV
EVPETIKWV KOVOVWV.

2. AflortololpE 1o TTAicIo MapReduce TIPOKEINEVOL Va ETTITOXVUVOUUE Kl VO KOTOVEI-
poupe TNV avadritnon AVong evocg MNpofAnuatog IkavoTttoinang Mepiopiouwy ag OAOLC
TOUC ETUIAUTEG-EPYATEC TIOU TUXAIVEL VO €XOULUE OTN dIABEDT) paC.

3. AvadEIKVUOUUE TO TIAEOVEKTHHOTO TWV XOAAPWVY ETUTIEdWV S1Ad0CNC TIEPIOPICHUWVY,
OTIWC N oLVETIEID opiwv (bounds consistency) Evavtl LPNAGTEPWV ETUTIEOWV OTIWC
N OULVETIEIO OKUWV (arc consistency). MNpoteivoupe KavoUPYIEC HOPYPEC XOAAPWV
ETUTIEOWV BIAG0CNC TIEPIOPICUWV KAl GUYKPIVOUKE TNV aTt0d00H TOLG O€ OXEON UE
Ta LYNAGTEPQA ETUTIEOO BIAOOCNC TIEPIOPICHWY, TOCO BEWPNTIKA OO0 KAl TIPAKTIKA.
ATIOVTAPE OTNV €PWTNON YIa TO TIOTE CUPPEPEL VA XPNOIUOTIOIOVKE XOAOPA ETTITIESA
018000NC TIEPIOPICHWV.

Ol oLVEICQPOPEC YOG QOKIMAOTNKAV WC ETT TO TTAgioTov o€ MpofARuata Ikavortoinong
MePIOPICUWVY ATIO TOV TIPAYHATIKO KOGHO, OAAG Kal G€ Yla VPUTEPN YKAUA TIPOBANUATWY
TIOL XPNOCIYOTIOIOVVTAI OE ETTICNUOLE dIAYWVICHOUC ETIIALTWV MNpoypayuatiopo ue Me-
plopIoPOoUC. 'Evag TETOIOC TIPAKTIKOC ETUAUTHC OVOIKTOU KWAIKA gival o Naxos Solver 1tou
XPNOIKUOTIOINCAKE WC TO TIESIO EQUPUOYNC TWV TIEIPAUATWVY.

OEMATIKH NEPIOXH: Texvntr) Nonpoouvn, IkavoTtoinon Meploplopwv

AEZEIZ KAEIAIA: avalntnon, EVPETIKOI KaVOVEC, TuxaloTtoinon, MapReduce, diadoon
TIEPIOPIOUWV, CUVETIEIO OPiwWV, SIATIPNGCN CUVETIEING OKUWV
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2YNOINTIKH NAPOYZIAZH

O o10X0¢ TN SIOTPIRNC EiVal VO CUVEICPEPEL OTNV EPELVA TTAVW oTov Mpoypay-
poTiopo pe Meploplopolg (Constraint Programming) Ttou €ival pia 1tepioxn tng
Texvnti¢ Nonuoolvng. ZTo TIAQICIO aUTAC TNG Epyaaiag, Ttaprxbnoav Kaivotoua
BEWPNTIKA ATIOTEAECUOTA TA OTIOIN EIXOV WC TIPAKTIKA CUVETIEIN TNV ETTITAXUVON
TNC emtiAvong twv MpoBAnudtwy Ikavottoinong Meplopiopwy.

MNpopBARuata Ikavortoinong Meplopiouwv

‘Eva rtapddeypa MpoBAiuatog Ikavoroinong Meplopiopwv (Constraint Satis-
faction Problem — CSP) arto tov ipayuatiko KOGO TIoU TTIAVETAI HEow Mpoypap-
poTIopoU pe Meploplopolg, gival n KATAoTPwaT WPOAOYIwWV TIPOYPAPHATWY yia
EKTTONOELTIKA 10pLOTa (course scheduling). Ze éva TET0I0 TIPOPANPA LTIAPXOLV
QUOTNPOI TIEPIOPIOHOI OTIWC TO va NV d1dAcKovTal TALTOXPOoVa dUO PaBUOT OTNV
idla aibovoa Kal va pnv diIdAoKovTal TAUTOXPova dVO Padruata Tov idlou £Touc.
AlyOTEPO OLOTNPOI TIEPIOPICHOI aPOoPOoUV GTN PN OTIOPEN KEVWV OTA TIPOCWTIIKA
WPOAGYIO TIPOYPAPHATA POITNTWVY KOl KaBnyntwv.

AN Ttapadelypa MpoBAnuatog Ikavortoinong Meploplopwy gival N Katavoun
TWV POSIOPWVIKWVY CUXVOTHTWVY € Hia Xwpd, ET01 WOTE 0 £vag PadloPwVIKOC 0Tab-
MOC va PNV KAvel TIapePPBoAEC atov aArov (radio link frequency assignment). 'Evag
OLOTNPOC TIEPIOPICPOC GE AUTHV TNV TIEPITITWON €ival 6TI dV0 OTABUOI TTOL EKTIE-
MTIOUV OTNV id10 TIEPIOXT) OPEIAOLY VA XPNCIUOTIOIOVV GUXVOTNTEC TIOU JIOPEPOLV
TOULAAXIOTOV KOTA VO CUYKEKPIPEVO OPIBUO PEYOKUKAWV.

O1 cLVEICYOPEC TNG SIATPIBAG

Onw¢ Ba TTapouolaoTei JIEE0BIKOTEPA TIAPOKATW, GTOV MNMPOYPAUUATICHO HE
Meplopiopol eTtAboLUE Ta MpofArRuata IkavoTioinong MepIoPIcPWY EVOANACGOO-
VTaG

* pia péBodo avaldrtnong (search method) kai
e pia dlodikacia d1adoancg TIEpIoPIcHWY (constraint propagation).

H ouvelo@opd tng SIOTPIBAE a@opd Kol aTOouC dVO ALTOUC GEOVEC KOl CUYKEKPIPEVA
ot

1. BoBulaio TUXAIOTIOINGT ELPETIKWV KAVOVwWVY avalrtnong [P2,P3]
2. Katavoun Tng avaditnong HEow Tou TtAaiciov MapReduce [P4]

3. OVAJEIEN TWV TIAEOVEKTNHUATWY TWV XOAAPWV dladIKACIWV d1ddoang Tieplopl-
opwv [P1,P5]



MAaic10 TTOPATNPACEWVY KOl TIEIPOHATWV

H mtpokAnon ota MpoPAjuata Ikavortoinong Mepiopiopwy EyKETal aTn PeYAAn
TIOIKIAIO TOUC Kal OTIG dIAPOPEC TNG OLOKOAIAC ETTIALCTIC TOUC. AVOTIOPELKTA, KO-
TIOIOC TIOUL XPNOIUOTIOIED TOV MNpoypappaTIouo pe Meploplopolg, dev eival duvatov
VO aoX0AnBei e OAa Ta €idn TIPORANPATWY. ETUTIAEOV, N €TUIVONGCN KAl PEAETN
OKOMO Kal TexvNTwv MpofAnudtwy Ikavortoinong Meplopiopwy gival ouvnbeg
@aIvopevo otn BiBAloypaegia.

TiBetan AOITIOV TO EPWTNUA: GE TIOIO TIPORBAAUOTO OQEIAEL VO OOKIUATEL TN YEBO-
doAoyia TIOL TIPOTEIVEL 0 EPELVNTHC WOTE VA €ival OGO TO dLVATOV APEPOANTITOC;
Eival Bepitd va aoxoAeital pe texvnta TpoBARuata; AKOUO Kal OV GUH@WVI|COUME
0TV €E£TAON EVOC CLUYKEKPIUEVOU TIPOBANMOTOC, UE TTIOI0 TPATIO SIATUTIWVETAL OUTO
o€ éva cvotnua Mpoypappatiopol pe Meplopiopoue; ZNUEIVETAL OTI BEPENIWONC
OTOX0C ToUL MpoypaPPaTICHOU e MeEPIOPIoUOUC Eival N EVKOAIa dIOTUTIWONC.

Katd tn die€aywyn ¢ Epeuvag TnE Ttapolong dIatpIPng, ETTEVOVCAUE OTNV
ETTIALON ATIAITNTIKWY TIPORANUATWY ATIO TOV TIPAYUATIKO KOOUO, OTIWE I KATA-
OTPWOTN WPOAOYIWV TIPOYPAUHATWY YIa EKTIAIOEVTIKA 1IOpVUOTA. AGXOANBAKAUE
OMWC KOl Pe ELPUTEPA TIPOPBANUATA, TEXVNTA Kal PN, OTIWG AUTA TIOU XPNOIHO-
TIOIOVVTOI O€ ETTIONHOULE dlAYWVIOCUOUC TOXVTNTOG CLOTNUATWY MPOYPOUHATIONOU
pE Meplopiopoie. Kal 0Aa autd emekteivovtag Eva cLoTnua MpoypoupoTiopoU
pE Meploplopovg avolktol Kwdlka Naxos Solve TIOL €XOULHE ONMIOLPYNCEL Ol
idlo1 KOl XpNoIUOoTIoIEiTal EVPEWC AOYW TNC EVKOAIOG dloTVTILWONC MPOoBANUATWY
IkavoTtoinang MepIopIoUWVY TIOL TIOPEXEL.

1 Tuxaiol Kol VIETEPUIVIOTIKOiI EVPETIKOI KAVOVEG: ME@uPLVOVTOG
TO XGOMO

‘Eva MpopAnua Ikavortoinong Meploplopwv aTtoteAEiTal ard Eva 6UVOAO LETa-
BAntwv (variables) kai éva cOVOAO TTEPIOPITUV (constraints) TIOU TIC CUVOEOLV.
KaBe petafAnth Taipvel TiUr atto €va TIETIEPOCPEVO GUVOAO OKEPQIWY TIOL OVOUA-
Cetan rredio Tipcdov ¢ (finite domain). "Evag cuvouoGUOC TIHWV TwWV JETARANTWV
TI0L eV TtapafIalel Kavévav TIEPIOPICUO gival AVan Tou TtpofARpoToC. ETopévwg,
ylo va Bpoupe piao A0an, apkei va e&etdooupe GAoUC Toug dLVATOUC GLVOLOCHOUC
TIMQV TWV PETAPBANTWVY TOL TIPORARUATOC.

1.1 H avayKaIloTNTo TWV EVPETIKWV KAVOVWV

QoT1000, KABWC avéavovTtal ol HETABANTEC TOU TIPOPBARUATOC, Ol CLVOLACHOI
TIOU TIPETIEI VO EETATOLE ALEAVOVTOL EKBETIKA. ETTEIdN €ival amayopeuTiKOg O
OPIOUOC TV LTIOYNEIWV AVCEWV YIO VO TIC EEETACOVE OAEC, XPEIOLOPOOTE TOUC
AEYOUEVOULC EUPETIKOUG Kavoveg (heuristics) TIPOKEINEVOU VO EETACOVE TIPWT
TIC TIEPIOOOTEPO KUTIOOXOMEVES» LTIOWNPIEC AVTEIC.

Av LTTINPXE TEAEIOC ELPETIKOC Kavovag, TOTe Ba KOaTapyouTav n avaykn va
XPNOIUOTIOI)COLE Evav aAyopIBpo avaltnong. Oa divaue OAEC TIC LTTOWNPIEG

Thttps://github.com/pothitos/naxos


https://github.com/pothitos/naxos

AOOEIC WC EI0000 OTOV EVPETIKO KAVOVA KAl EKEIVOC Ba pag ETIECTPEPE OTIELOEINC
N AUOT. OpwC TEAEIOC EVPETIKOG KAVOVAC OEV LTIAPXEL.

AuTO onpaivel 0TI, o€ pia akpaia aAAd OxI OTIAVIA TIEPITITWAT, EVOC EVPETIKOG
KOVOVOC PTTIOPED va divel TIPOTEPAIOTNTA O KOKEC LTIOPN@IEC AVCEIG, KOBLOTE-
pPWVTOC £T01 TNV avadtnon. Autog gival 0 AOyog IO TOV OTIOI0 TIOAAEC (POPEC N
pMEBOOOC avaldtnong ETIIAEYEL 0TNV TUXN TNV €TTOUEVN LTIOYHEIO AVGH, aVTi va
XPNOIKOTIOINCEl KATIOIOV VIETEPUIVIOTIKO EVPETIKO KOVOVA.

1.2 BaBpiaia TuXonoTtoinen EVPETIKWVY KAVOVwWVY

Avdpeoa ota dU0 GKPA TWV VIETEPUIVIOTIKWVY Kal TUXOIWV EVPETIKWY KAVOVWVY,
OTO TTAQICI0 AUTHC TNG JIOTPIRAC dNUIOLPYRBNKE yIa TIPWTN POPA N duvaTOTNTA
BabBuiaiag TuXAIOTIOINGNC EVOC VIETEPUIVIOTIKOU EVPETIKOU Kavova. Kotaokeud-
OTNKAV UBPIBIKOI EVPETIKOI KAOVOVEC TIOU JOKIUAOTNKAV 0 SUOKOAA TIPOBARUOTA
IKOIVOTIOINONG TIEPIOPICHUWV OTIO TOV TIPAYHOTIKO KOGHO.

ETumAéov, dnuioupyndnke pia kaivoLpyla péBodog avalnnong PoPS (Piece
of Pie Search) n otoia xpnoIUOTIOIET ATIOTEAECUATIKA TOUC TIOPATIAVW LBPISIKOUC
EVPETIKOVC KAVOVEC. OO0 AlYOTEPEC AVOBETEIC TIMWV £XOLV TIPAYUOTOTIOMBEL, T0G0
TTIO TUXQIOI EivVal Ol EVPETIKOI KAVOVEC TIOL XPNOIoTIoIouVTal. O00 TIEPICOOTEPEC
OVABETEIC £XOLV TIPAYUATOTIONOE(, TOOO TIEPICCOTEPO VIETEPHIVIOTIKOI EVPETIKOI
Kavoveg xpnaoiyortolovvtal [P2,P3].

Moladel he TNV TIEPITITWON TIOL EEKIVAEL PIa TIAPTIOO OKAKI. APXIKA, EXOULUE
TIEPIOCOTEPEC ETIIAOYEC KOl UTIOPOUKE VO ETUAEEOUHE TUXAIO JETA ATTO €va IEYOAD-
TEPO OLVOAO KIVAGEWV. O00 OUWE 0 XPOVOC TOL TIAIXVISIOU KUAJEL, 1N OTPATNYIKN
MO YIVETOI OAOEVA KOl TIEPICCOTEPO VIETEPUIVIOTIKI).

2 Evowpdatwon tov MapReduce otov Mpoypoappatiopno pe Me-
PIOPICHOUG

H TIpOKANGN Twv NUEPWV UaC OV €ival TIAVTOTE Va TIEPIOPICOVPE Evav OA-
YOPIOUO wOoTE va aTtaltei AlyOTEPOUC UTIOAOYIOTIKOUC TIOpouC. To INTOUPEVO
TIOAAEC (POPEC TIAEOV Eival TIWC Ba aI0TIOINCOLE EVaAV «OTPATO» ATIO OTNVOUC
UTTOAOYIOTEC-EPYATEC TTIOU TiBevTal EDKOAQ GTIC LTINPETIEC PO,

Ma tnv TepimTwan tou Mpoypapuatiopol Pe MepIopiopovg, ag @aviaoToUE
0TI £X0LUE OTN dIABEDT) pag EVvav PEYOAAO apIBUO LTTOAOYICTWV OTO VEQPOC (cloud)
TN¢ Google 1) Tng Amazon. TMw¢ PTTOPOUHE VA TOULCG EKUETAAAELTOVUE YIO VO
ETUAVCOULPE ypnyopoTEPa Eva MpoPAnua Ikavortoinong Meplopiouwy;

To MapReduce eival £va yevikotepo TtAaiolo (framework) yia Tnv Katavoun
Kol padikn emeéepyaaia TToAAwVY dedopévwv (big data) og évav avBaipeta peydio
OPIOUO LTIOAOYIOTWV. XPNOILOTIOINONKE APXIKA YIO TNV EVPETNPIOTIOINTT OAOKAN-
pOoU Tou AladIKTOoL. Me aTtAd Adyia dnAadr], 1o MapReduce gival n Bdon Tn¢
pnxavig avadnmong Google. Ao ekei kal TIEPA, To TTAdiclo MapReduce €xel
XPNOIUOTIONBE Kal G€ TIAEIOTEC AANEC EQAPUOYEC OTIWC I ALTOMATH OPadOTIoINGN
EYYPAQPWV, N UNXOVIKI JABNCN Kal N autopatn JETA@pOaon.

Mia aTto TI¢ KavoTopieg g d1aTpIRng agopd otnv epapuoyr Tou MapReduce
TIAVW OToV MNPOoyPaPHOTIONO WE MePIoPIoPOUC. M0 CUYKEKPIUEVA, TO GUVOAO TwWV
uTIoPN@iWV AVCEWV EVOC TIPOPARUATOC KWOIKOTIOIEITOI KOl KATAKEPUATI(ETAI O



KOMMOTIO. ZTr CUVEXEID TO KOPUATIO OLTA OTIOOTEAAOVTAI OTOUG ETIAUTEC-EPYATEC
(mappers) yia va avalntioouy av JEca o€ auTd KPURBETOI KATIOIO TIPAYUOTIKN
AVOaon Tou TTpoBARpOTOC. Me GAAO AdyIa, dlalpeital To dEvOPO avadr)Tnang o€ TIOAAA
KOMMATIO Ta OTTOIO KOTOVEUOVTAI AUTOPOTO PEow Tou MapReduce ag évav apiBuo
EPYOTWV TIOUL TO EEEPELVOLV TAUTOXPOVA.

Emeidér to MapReduce dé€xeTal w¢ €i0000 POVO apxeia KEIMEVOL, aTn dIOTPIPN
TIPOTEIVETOL €vaC YPIYOPOC TPOTIOC KWAIKOTIOINONG TWV KOPPOTICV TOU dEVOPOU
avadrtnong Kal N arto0rKeLaT) TOLG G€ EVa PEYANO apxeio Kelévou. O atdxoc ival
VO KOUMATIAOOLE TO d€EVOPO 0€ OO0 TO dLVATOV TIIO ICOUEYEDN PEPN, OVTWC WOTE
Va TIETUXOULWE BiKaln KOTAVOUN] TOU @OPTOL EPYATiag OTOLC ETIIAUTEC-mappers.

Eival acOp@opo va diatpeéoupe 0A0 10 0EVOPO avadrTnaong TIPOKEINEVOL va
O00UWE TN SO Kal TN HOP@I) TOU Kal VA TO KOUHPOTIAOOUWE o€ ioa pépn. M’ auto
TO AOYO, ETIIOKETITOPOGCTE OEIYUATOANTITIKA PYOVO KATIOIOLG OTIO TOUC KOPBOUC TOu
OEVOPOUL, YIO VA oKlaypa@nBEi Kal va LTTIOAOYIOTEL N doun Tov, diXwC Va XPEIOOTEI
VO Ta ETUOKEPOOUPE OAOLC TOLC KOUPBOULC TOL €K TWV TIPOTEPWV [P4].

3 Ta TIAEOVEKTAHMOTA TNG XOAXPHEG S1Ad00 NG TIEPIOPICHWVY

MEXpPI Twpa E0TIGOOUE OTIC HEBOdOULC avaldrtnong AVCEWV yia ta MpoAruata
IkavoTtoinong MeplopIoPWVY Kal TO TIWE PTTOPOUV VA ETUITOXUVOOUV Kal VO KATAVE-
puNBoLv. 1o TTPayUATIKG cLOoTPOTa MNpoypappaTIopol pE Meploplopolc OPWC, N
KABe peBodo¢ avalntnong eVOANACGOETAl PE TN AEYOPEVN SIAA0aN TTEPIOPICLIOV
(constraint propagation). OTOTE, €ival e€icouv onuavTIKO va aoX0AnBei Kaveig Kal
ME QUTAV.

3.1 Mé0odol avaltnong

Mio cvotnuatikr) pébodog avaldnnaong (search method) emiAbel Bripa Bripa
éva MpoéPAnua Ikavortoinong Mepiopiopwy. ApXIKA, OVOBETEL hia TIRN TNV TIPWTN
METAPBANTH TOL TIPORBAAUATOC OTTO TO TIESIO TINWV TNC. 'ETIEMA, AVaBETEI 0T OEVTEPN
METOPBANTA TOL TIPOBAAUATOC Mia TIUr aTTO TO TIEdI0 TIHWV TNC. MeTA avaTiBeTal
TIMN) OTNV TPITN PETOBANTH K.0.K.

Av PeTd aTtd KATIola avabeon TTapafIdleTal OTIOI00ONTIOTE TIEPIOPICHOC, OEV
EXEL VONUA va d1ATNPEROOUVKPE AUTH TNV AVABECT) KAl VO TIPOXWPHOOVUE, AOKOTIA,
OTnV €TTOPEVN avABeon. AUTO TIOL TIPETIEL VA KAVOUUE OE OUTH TNV TIEPITITWON,
gival va avaipéaoupe TNV «TIPORBANUATIKA» avAaBean Kal va SOKIJAGOUUE KATIOIN
EVOANOKTIKN.

3.2 AIGldOCN TIEPIOPICUWV

H d1ddoan Teploplopwyv eEUTINPEETEL TO VA YAITWVOLUE ACKOTIEC AVOBETEIQ
TIHWV O€ PETAPANTEC. AUTO OEV ETUTLYXAVETAI PE TO VO EAEYXOUUE OTIAG (OTIWC
OTIC KAOCIKEG HEBOOOLC avadnTnaong) av ol UTIAPXOVCEC avabeaelg TtapaBialouvy
KATIOIOV TIEPIOPIOKO. H d1ad0oan TIEPIOPICHUWY OTIOCKOTIEI ETUTIAEOV OTO VA OTIO-
MOKPUVEL ATIO Ta TIESIA TIUWV TWV LTIOAOITIWV PETARANTWY (OTIC OTIOIEC OEV EXEL
avateBei akopa TIPN) TIMEC Ol OTTOIEC Eival AOULVETIEIC.



Me GAAa Adyia, n d1ddoacn TIEPIOPICHWV deV EGTIALEI HOVO CTIC LTIAPXOUCEG
avaBEaelg, OANG TIpooTabEei va agaipéoel artd Ta TIEdia TIHWV 00EC TIEPIOCOTEPEC
TIMEC OEV UTTOPOUV VO CUHETEXOUV OE HEANOVTIKEC OVOBETEIC. Z€ YEVIKEC YPOUUEC,
00€C TIEPICOOTEPEC OCLVETIEIC (inconsistent — nogood) TIPEC a@alpolUvTal ATIO Ta
TIESIO TIHWV, TOGO LYNAOTEPO ETTTIESO SIADOCNC TIEPIOPICHWV AEPE OTI EXOUE.

3.3 Moon di1doon TIEPIOPICHWV;

EVAoya Ba uTtopoLce Kaveic va IoXLPIOTE AOITIOV 0TI 600 TIEPIcOOTEPN d1ddoan
TIEPIOPIOUWVY EXOUME, TOCO TIEPICCOTEPO Ba BonBnBouv o1 pebodol avalrtnong
Kal Ba Kavouv AlyOTEPEC ACKOTIEG aVABETEIC TIMWV. ALEAVOVTAC OUWC TO ETTITIEDD
318d00NC¢ TIEPIOPICHWVY, ALEAVETOI AVOTIOPEVKTA KOl 0 XPOVOC TIOL auTh dartavd.

Ol OXETIKEC EpyaTieq oTNV TpEXOLOA BIBAlIoypaia E0TIAOLY TNV ETTIIVONCT
vPnAwv eTumedwv diddoang meplopiopwv (higher-level consistencies). To {ntov-
MEVO OUWC OEV Eival va JETOKLANCGOUPE TO KOOTOC TNG ueBGdoL avaldntnong ot
014d0aN TIEPIOPICHWY, OAANG VO UEICOUVUE TO XPOVO TIOL ATIAITEITAI 0BPOICTIKA
ylo TN Aban evog MpoPAnuatog Ikavottoinong Meplopiopwy.

3.4 ATt ) Bswpia oTNV TIPGEN

AUTO TTOUL €ival A&I0 aTTOPINC —KaI ATIOTEAEL AVTIKEIUEVO TN EPELVAC OUTNAC TNG
SlaTPIPAC— €ival yiati v LTIAPXOLY TIAPA TIOAAEC ONUAVTIKEC EPYOCIEC OXETIKEC
ME Ta LYNAG eTtirteda d1Ad0ONG TIEPIOPICHWVY, OTIC IDIEC EPYOTIiEC AUTEC TIAEQV
OMOAOYEITaIl OTI GTIAVIO XPNOIUOTIOIOVVTOL TNV TIPAEN. Ev TéAEL, Ttola Ba pttopovce
va gival pia TtpoKTIKA Hop@n S1Ad00NC TIEPIOPICHWV;

Mia aTtAr} 0OAAG OX1 ATTAQIKK) OTTAVTNON €ival OTI TIPOKTIKI Hop@r d1dd0an g TIEPIO-
PICUWV €ival AuTH TIOL XPNCIYOTIOIEITOI € TIPOKTIKA cLOTAUOTO MpoypaupaTIouoU
pe MeploplopolC. Me Tn o€Ipd Tov, Eva TIPOKTIKO a0oTNUa Mpoypouuatiopol Pe
Meploplopoug eival ekeivo TIou

1. TTOPEXEL EVKOAIO SIATUTIWONCG TIPOBANUATWY Kal £T01 XPNOIKOTIOIEITAl ATIO
€vav IKavo apiBuo TIPOYPOUUATIOTWV-XPNOTWVY Kal

2. duvatal va eTIIAVCEI O€ IKAVOTIOINTIKOUC XPOVOUC €va evpl @dacpa Mpo-
BAnuAtwv lkavottoinong MeplopIoPwV: aTto aTTAEC OTIALOKEPOAIEC OTTWC N
TOTIOBETNON OKTW PACIAICOWY G€ IO OKOKIEPH XWPIC VO OTIEINOLVTOL UETOED
TOLC, MEXPI TNV KOTACTPWAT TOU WPOAOYIOL TIPOYPAPMATOC TOU TUNHOTOC
MANPO@OPIKAC Kal TNAETIIKOIVWVIWV.

O Naxos Solver givai pia tetola BiIpAI0ORKN MpoypappatiopoL pe MNeplopiopoug
KOl XPNOIUOTIOINONKE WC TO TIESIO EPAPHOYNE TWV TIEIPAPATWY TNE SIATPIRAC.

Mo va Kpivoupe av éva eTtTed0 dIAd00NC TIEPIOPICHWV Eival TIPOKTIKO, XPEIQ-
{eTal, EKTOC OTTIO TO VA BPOoULE Eva TIPAKTIKO a0aTnua MNpoypayuatiopou ue Me-
plOPIGHOUC, VO aTto@aacicoupe Ttola MNpofAnuata IkavoTtoinong Meplopiopwy Ba
ETUAVCOUE. Z€ aUTH TN dIOTPIPA, Yo va LTTAPEEL GO0 TO SLVATOV TIEPICCOTEPN QIE-
poAnyia, xpnaoiyoTtoidnke Eva eupL EAGHA TIPORBANUATWY, ATIO TOV TIPAYMOTIKO
KOOMO OAAG KOl TEXVNTWVY, OTIO TOV TIPWTO d1EBVI) S1aYWVIOUO PIKPWVY ETUHAUTWV



XCSP3E| EE&AANOL, 01 TIEPIOCOTEPEC EPYOTIEC OE QLTI TNV EPELVNTIKI TIEPIOXN
XPNOIKOTIOIOVV PEPOC AUTWV TWV TIPOPANUATWVY YIO TIEIPOUATIKEG UETPNOEIC.

3.5 Ta TtAeovEKTAPOTO TNG XOAAPRG 816800 NG TIEPIOPICHWV

Y116 10 TIPIOUO TOU YEVIKELUEVOU TIPOKTIKOU TIEIPOUATIKOD TIAQICIOU QUTHC TNC
EPYOCiag KATaypAPNKAVY EKTEVEIC TIOPATNPHOEIC AVAPOPIKA PE TNV artdédoaon dla@o-
PWV ETUTIEOWV dIAOCNC TIEPIOPIOUWVY, OTIWC N CUVETIEIA OKUWV (arc consistency),
N CLVETTIEID OpiwV (bounds consistency) Kai pia KavoOpyla JOP@I) CLVETIEIOG OPiwV
ylo JETABANTEC pe peyeBoC TIEdIOV TIHWV PIKPOTEPO aTIO R (R bounds consistency)
TIoL TtpoTteivetal otn dlotpIPn [P5].

FiveTal yia TIpwtn @OopA KOTAYyPA@r) TWV TIEPITITWOEWVY OTIC OTIOIEG 1 dIATH-
pPNON TNG CUVETTEIAG OPIWV (EVOC XOAAPOU ETUITIEOOUL JIAGOCNC TIEPIOPICHWV) KAVEL
ypnyopaotepn TNV avadftnon aro 0,Ti N dI0THPNoN CLVETIEIOG OKUWV (EVOC un-
AOTEPOU ETUTIEAOL BIABOCNC TIEPIOPICHWVY). AUTH N TIAPOTHPNGCN OTIO POV NG
gival aNUOVTIKN), ETTEION LTIAPXEL N KOIVNA TIETIOIBNGN OTI Ta LYPNAOTEPO ETTITIED
310000N¢ TIEPIOPICUWV EivVal TIAVTOTE TIO OTIOTEAECUATIKA.

MEpa atto TNV KOTAYPAPr) EKTEVWV TIOPATNPACEWVY, N dIaTPIPr) eTteényei Be-
wWPNTIKA& To AOYy0 TToL KATTola MpoBAruota Ikavortoinong Meploplopwy AbvovTal
OTTIOO0TIKOTEPA PECW TNC SIOTAPNONG CUVETIEIOG OPiwVv O€ GXEON WE TN dlaTrPNoN
OULVETTEIOG OKPWV. MapouaiddovTal Ol ETIPEPOUC UTTOAOYIOTIKEC TIOAUTIAOKOTNTEC
KOl TIPOTEIVETAL EVa KPITAPIO YIO VO ETUAEYOUUE TO KOAUTEPO ETTITIESO d1AIdOONC
TIEPIOPIOUWV YIa T0 KABE MpoAnua IkavoTttoinong Meplopiopwy TIPIV apXicOUVUE
va 1o €TUAVOLE [P1].

ETttiAoyog

«O xpNaoTtn¢ armAd dIATUTIWVEL TO TIPOBANUA Kal 0 ETIAVTACG Bpiokel TN AVon.»
AUTO €ival To oLVOBNUA TOU ETTIOTNHOVIKOV TOUEA ToL Mpoypappatiopov ue Me-
PIOPIOPOUC KOl OUTOV TOV OTOXO ETIXEIPEI va BepaTtieboel n v Aoyw dIaTPIRNA:
TNV KOADTEPN EPTIEIPIO TOL XPNOTN HECW TNC YPNyopotePNC ETIALONG KOBNUE-
pivawv MpoBAnudtwy Ikavortoinong MNeplopiopwv. H auvelo@opd tng dotpIBAg
ouvoyileTal

1. oTOV GLUVOLOCHO TUXAIWV KOl VIETEPHIVIOTIKWVY EVPETIKWY KAVOVWV YIa TNV
erutdyxuvvon tng avaditnong Avboswv [P2,P3],

2. 0TV Katavoun tou dévdpou avaltnong o€ TTIOANOUC UTTOANOYIOTEG-EPYATEG
he TNV apxitektovik MapReduce [P4], kabw¢ Kal

3. OTNV TIEIPAPATIKA OAAG KOl BEWPNTIKI TEKUNPIWGON TWV TIAEOVEKTNUATWY TIOU
olvaTal va TIPOCEEPEIL N XaAdpwan ¢ diadoanc Teplopiopwy [P1,P5].

Zhttp://www.cril.univ-artois.fr/XCSP17
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1. INTRODUCTION

None are more hopelessly enslaved than those who falsely believe
they are free.

Johann Wolfgang von Goethe

With this quote, Goethe implies that we are all under strict constraints; they are
an integral part of our lives, even when we do not admit it.

Therefore, a good approach to tackle any problem is to explicitly describe its
constraints and search for a solution that does not violate them.

1.1 What is Constraint Programming?

Here Constraint Programming comes into the picture. Its motto is “the user
simply states the problem and the computer solves it” [34]. This proposition implies
that

* the “user” is required to provide only a bare minimum of the description of a
problem, i.e. only the constraints should be defined, and

* the rest (solution search process) is undertaken by the machine, i.e. solver.

There are several variations of the solution search processes under the Constraint
Programming umbrella. In all cases, however, we describe and formalize every
problem as a Constraint Satisfaction Problem (CSP). A formal description of a
CSP will follow in the next chapter.

Conclusively, Constraint Programming is the set of all the methodologies that
can solve arbitrary Constraint Satisfaction Problems (CSPs).

The description of any CSP is a minimal definition of what the problem is and
does not contain information on how to solve it. Normally, a CSP has a very
large number of candidate solutions, and a Constraint Programming methodology
should be able to identify the feasible solutions out of them.

Constraint Programming allows the easy and declarative statement of a CSP
and provides an “armory” of several generic search methods that can be used
to solve it. Constraint Programming has been applied in scheduling [58], radio
frequency assignment [19], Bioinformatics problems [6, 69], etc.
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Figure 1.1: Harold Cohen, 040501, print

1.2 How Constraint Programming relates to Al?

Artificial Intelligence (Al) is a prestigious Computer Science area that changes
the world. Distinguished Al applications include self-driving cars, search engines,
medical diagnosis, image recognition, even automatic drawing of paintings such
as the ones illustrated in Fig. [I]and [1.1]

Computer vision is a discipline that traditionally belongs to Al. In 1975, David
Waltz introduced constraint propagation, the core of Constraint Programming, to
create a three-dimensional view of an object given a two-dimensional image [92].
Two years later, Alan Mackworth published in the journal of Artificial Intelligence
the evolution of this constraint propagation algorithm which is with variations still
the heart of most Constraint Programming solvers [55].

Constraint Programming also adopts search methods used in Al to solve
Constraint Satisfaction Problems. A series of Al methods like depth-first search
(DFS), limited discrepancy search (LDS), etc. have been successfully employed
in the Constraint Programming world, during the CSP solving phase. Furthermore,
Machine Learning (ML) is constantly gaining ground in the context of Constraint
Programming [66].

Al is only one of the areas that have contributed to Constraint Programming
so far. Integer Programming and Linear Programming that belong to Operations
Research, another Computer Science discipline, have also influenced Constraint
Programming.

N. Pothitos 32



Constraint Programming: Algorithms and Systems

1.3 How Constraint Programming relates to programming?

When one hears the term “Constraint Programming” for the first time, they often
imagine that it is something like a common programming language. Nevertheless,
the word “programming” here has a broader meaning.

Historically, Constraint Programming was implemented for the first time using
Logic Programming. Thus, only the “Constraint Logic Programming” term initially
existed.

When different implementations (imperative languages) came into the picture,
the generalized term “Constraint Programming” was introduced.

Constraint Programming should not be mistaken for a tool to describe the steps
toward solving a problem. Constraint Programming is all about describing the
constraints that a solution should satisfy. Searching for a solution is done behind
the scenes.

Combination o€ vandom and
detevministic heuvistics

PoPS Seavch wethod

ConStvaint Proarammin . )
C 056 conteibutions 8! ] Tategrating with Magkeduce

Bounds Con%\‘ﬁ‘@.nc\i bene€its
Propaaation
)

A wnew Bounds Con%\%ﬁ’enc\{ vaviont

Figure 1.2: Our contributions

1.4 Our contributions

In programming languages, the statement of an algorithm is followed by com-
pilation/interpretation and execution. In Constraint Programming, the statement of
the constraints is followed by independent methodologies that solve the problem.
This dissertation aims to make the solving process more efficient. Figure
summarizes our contributions in this direction.

The next Chapter |2| contains the preliminaries needed to understand our
contributions in the rest of the chapters. Constraint Satisfaction Problems are
formally defined along with a framework of search methods that solve them by
employing heuristics. Constraint propagation, a basic element of Constraint
Satisfaction, is introduced.

Chapter [3 goes through the papers that are relevant to our contributions and
presents MapReduce.

Chapter [4] illustrates our first contribution [71], [72]. We study two distinct
categories of heuristics, deterministic and random, and we make the most out of
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them by smoothly combining them. We create new hybrid heuristics and a new
search method based on them.

In Chapter 5, we integrate Constraint Programming into the state-of-the-art
distributed MapReduce framework [70]. We exploit MapReduce scalability to
solve large CSP instances.

Finally, in Chapter 6] we highlight the advantages of relaxed constraint propa-
gation methodologies when used in conjunction with search methods to validate
constraints and speed up search [73]. This last contribution attempts to contradict
the “conventional wisdom” which implies that arc consistency or even higher con-
sistency levels are always better than bounds consistency. We propose a new
relaxed consistency level and a criterion to decide a priori when to enforce relaxed
consistency instead of higher consistency levels [74].

N. Pothitos 34



Constraint Programming: Algorithms and Systems

2. CONSTRAINT SATISFACTION PRELIMINARIES

You see this risk time and again in deeply theoretical communities
where they just solve problems for their own amusement and pretend
that what they are doing has some utility. | should say, obviously, that
I have been as guilty as the next person of doing this.

Jeffrey Ullman

Hopefully, Prof. Ullman was not thinking of Constraint Satisfaction Problems when
stating the above; at least the nonartificial ones...

2.1 Constraint Satisfaction Problems

Constraint Programming (CP) aims at solving Constraint Satisfaction Problems
(CSPs) in a transparent way: the user simply states the problem and the computer
solves it [34]. The consequence of this “motto” is that the solver should decide
automatically on its own which algorithm will solve a given CSP without human
intervention; the role of the user is limited just to define the CSP.

This elegant separation of the user experience and the internal solving process
is what makes Constraint Programming an intelligent paradigm, and this is the
motivation behind this work. Every single CSP can be stated using commonplace
formalizations [83], 188].

Definition 1. A Constraint Satisfaction Problem (CSP) consists of

+ a set of constrained variables 2" = {X,, X,, ..., X, },

« the corresponding set of domains 2 = {D,,D,,...,D,} which are finite sets
(of integer values in this work) and

» the set of constraints between the variables ¢ = {C,,C,, ..., Ce}. Each con-
straint is defined as C; = (S;, R;).
- S, is the subset of 2" containing the variables affected by the constraint.

- R contains all the valid combinations of the values of the domains of the
variables in S;. Formally, R, € D, xD; x--xD, ,withX. ,X. ,...,X; €S,
1 2 kR 1 2 kR
and i1 < i2 << ik.
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Figure 2.1: A “mind map” with Constraint Programming preliminaries
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For the sake of readability, in this work, D, also denotes the domain of the
constrained variable X. Therefore, the domain of X, is denoted as D, and as DX1

too; these two are equivalent.
If we assign a value to every variable, and the assignments are valid with
respect to every constraint, then the assignment is a solution.

2.1.1 Variants

The above definition is very generic, thus many CSP categories-variants have
been introduced so far depending on their type of domains and constraints.

Continuous vs. finite domains

There are CSPs where the domains are continuous sets of real numbers. For
example, a variable can be assigned a decimal number, e.g. 0.25 or 0.7, out of
[0, 1]. Nevertheless, in this work we study only CSPs that are described using
finite sets of integers.

Unary constraints

We do not also refer to unary constraints in this work, due to their triviality. A
unary constraint applies onto a single variable. The initial domain of each variable
should be shrunk to include only the values permitted by the corresponding unary
constraint. This action can be performed as a single preprocessing step, before
proceeding to actually solve a CSP.

Binary constraints

Each binary constraint of a CSP affects exactly two variables. A binary CSP is
a CSP containing only binary constraints. Binary CSPs are important because it
has been proven that any non-binary CSP can be transformed into an equivalent
binary one [81]. And it is easier, at least in theory, to manipulate a binary constraint
rather than a higher-level constraint.

Let us assume that for a given binary CSP there is a unique constraint C,, =
(Sp Rp) with S, = {X,.,Xj}. Then, for the sake of readability, we denote this C,

constraint as C,-j, which in turn is equivalent to Cj,..

n-ary constraints

If a constraint affects n variables, we call it an n-ary constraint. The term “n-ary”
with n > 2 is usually used to differentiate a constraint from the unary and binary
constraints.

In the general case, an n-ary constraint C,, refers to a fixed number of variables
n = |S,| that can be assigned values out of an arbitrary set of tuples R,,.

With the more specialized “global constraint” term we refer to a constraint
pattern such as “all the variables in S, should be assigned different values” that
can be applied to any number n of constraints variables.
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Figure 2.2: A constraint network

Figure 2.3: The four Thessaly prefectures

2.1.2 Constraint networks

It is easy to view a binary CSP as a graph. We consider its variables as the
nodes of the graph, and we consider the constraints between the variables as the
edges or arcs that connect the nodes (Fig. [2.2).

Even when Ugo Montanari first stated the CSP definition back in 1974, it
was made clear that the notions of a constraint network and a binary CSP are
interchangeable. Non-binary CSPs can be depicted as hypergraphs [61].

2.1.3 Map-coloring problem

CSPs cover a wide range of problems, including planning and scheduling [9],
logic puzzles [47], all Boolean satisfiability problems [65], circuit design [76],
robotics [56], and many others. CSPs are widespread because they express
many problems that occur in real life.

There exists a huge list of interesting CSPs [38, 39]. For example, map-
coloring is a CSP for assigning colors to each prefecture in a given map, so as no
neighboring prefectures have the same color. Figure illustrates a map of the
Greek region “Thessaly,” containing four prefectures; the colors in the figure form
an indicative solution.

Problem 1. Typically, “Thessaly-coloring” is a CSP with:
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1. Four constrained variables: X,, X,, X5, X,. Each one of them represents a
prefecture color.

2. The corresponding domains are DX1 = DX3 = {1,2} and DX2 = th = {1,3}.
Numbers 1 2 3 represent respectively red, green, queH

3. The constraints are X, # X,, X; # X5, X, # X5, and X, # X, .
The solution in Fig. Is represented by the assignment
X, <1, X, «3,X; «2,X, « 1} (2.1)
2.1.4 Constrained optimization

A variation of Constraint Satisfaction Problems (CSPs) is the so-called Con-
strained Optimization Problems (COPs). A COP consists of variables, domains,
and constraints, just like any CSP. The difference is that a COP also requires an
objective function which maps any solution to a number, which is called the cost
of the solution. The target while solving a COP is not just to find a solution, but to
find a best solution, i.e. a solution with a minimum cost.ﬂ

COPs can be solved like CSPs, using a branch and bound strategy: When a
solution is found, its cost is recorded, and a new constraint is added to guarantee
that the next solution will have a smaller cost than the recorded one.

In relation to CSP solving, the only additional requirement of the above COP
solving procedure is adding dynamically a new constraint while searching. This
makes it compatible with plain CSP search methods, so this work covers both
CSPs and COPs as a whole.

On the other hand, this work does not cover convex optimization, a variant intro-
duced in Mathematics which paved the way for advances in Computer Science [16].
Besides, convex optimization applies to continuous domains, e.g. [0.5,3.1], while
in Constraint Programming we focus on discrete domains of constrained variables,
e.g.{1,2,3}.

2.2 A goal-driven search methods framework

Apart from a way to state CSPs, a user/programmer needs an elegant way
to state search methods that solve them. The CSPs should be “search-methods-
agnostic,” while the search methods should be “CSP-agnostic” in order to keep
the independence between Constraint Programming stages.

In related works, a lot of search methods have been implemented “out of the
box” in modern solvers [36]. This means, at least to our knowledge, that the
implemented search methods are coupled with the existing solvers. Nevertheless,
in this work we use Naxos, a Constraint Programming solver created by us that
not only supports the definition of ad hoc CSPs, but also facilitates the definition
of “custom” search methods [67].

1we could initially set all the domains equal to {1, 2, 3}. We used smaller initial domains just to
simplify the problem.

2There is also a COP variation which requires to find the solution with the maximum cost.
However, for simplicity reasons, we will not focus on it, as it can be easily transformed into a COP
with a minimization objective.
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1: function DFS(¥)
> The method reached the search tree level #:

2: D{', « D(,
3: foreachv € D, do
4: D, « {v} D AssignvtoX,
5: if no constraint is violated then
> Proceed to the next variable/level:
6: if £ = n then
7: return success
8: else if DFS(? + 1) = success then
9: return success
10: end if
11: end if

12: end for

13: D, « D,

14: return failure
15: end function

Figure 2.4: Defining DFS using an imperative pseudocode language

2.2.1 Search methods are made up of goals

Every constructive search method is built up of goals. Each goal executes an
operation, e.g. an assignment of a value to a constrained variable, and/or returns
another goal to be executed. The goal returned can be a meta-goal, which is a
goal that refers to another two goals. There are two meta-goal kinds:

1. The AND(g,, g,), which implies that the two sub-goals g, and g, must be
executed and succeed both.

2. The OR(g,,9,), which executes g,. If g, does not succeed, i.e. if it does not
lead to a solution, then g, is executed.

This goal-driven framework is able to describe most of the common search meth-
ods.

Note that even if we do not explicitly state it for the sake of simplicity, after each
goal is executed, we ensure that every constraint is respected. If any constraint is
violated after a goal’s execution, the goal is considered as failed.

2.2.2 The Depth-First Search example

Depth-first search (DFS) is an elementary search method also known as
backtracking search in the Constraint Programming world. This method iterates
through the variables of a CSP. For each variable X selected, it selects a value v
from its domain and makes the assignment X « v. It subsequently proceeds to
the next unassigned variable and makes another assignment, etc. as in Fig.[2.4]

If every variable is assigned a value and no constraint is violated, the assign-
ments set comprises a solution. In any case, if there is a constraint violated, the
last assignment to a variable is undone and we try to assign another value from its
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domain. If all the alternative values are exhausted, we backtrack to the previous
variable selected and we undo its assignment and so forth.

2.2.3 Defining DFS using goals

DFS can be straightforwardly described via goals. The ultimate goal in DFS
and in every constructive search method is to Label every variable with a value.
Each Label’s call aims to Instantiate a variable.

* DFS(Z) := Label(Z).
* Label(®D) := success.
» Label(%2") := AND(Instantiate(X), Label(2 -{X})), with X € 2,

where 2" is the set of all the variables. While Label iterates recursively through
the CSP variables, an Instantiate call attempts to assign a selected value v
to the variable X. If the assignment fails to produce a solution, the value v is
deleted and another instantiation is attempted, until all the alternatives in D, are
exhausted.

* Instantiate(X) := failure, with D, = @.

 Instantiate(X) := OR(X < v, AND(D, <D, -{v}, Instantiate(X))), with
veD,.
X

The interdependencies between the above DFS goals are graphically displayed
in Fig. [2.5]

Again, please note that in the above DFS description, we have omitted to
check the constraints. Nevertheless, as we have stated in the previous section,
after each goal is executed, it is implied that we check that no constraint is violated.
This check is very important when we make an assignment or when a domain is
modified. If any constraint is violated, the goal is automatically marked as failed
by the framework.

2.2.4 Example: Applying DFS on a CSP

Let us search for a solution of the “Thessaly-coloring” Problem [1| by applying
DFS on it.

* We begin by adding the DFS(Z") goal which is substituted by Label(2").
This will generate the rest of the goals.

» According to the above DFS definition, Label(.2") will be substituted by
AND(Instantiate(X,), Label({X,, X5, X })).

1. The first subgoal is Instantiate(X,) which in turn implies OR(X, « 1,
AND(DX1<—DX1 -{1}, Instantiate(X,))).

This means that we assign the value 1 to X,. If this goal or the subse-
guent goals fail, we will revoke their changes and execute AND(DX1 «

Dy -{1}, ).
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DFS(Z)

Label(2') -

AND

N

Instantiate(X) - Label(Z -{X})

OR
Xev AND
/ \ v"

D, <D, -{v} Instantiate(X)

Figure 2.5: The combination of the goals that compose DFS

2. The second subgoal is Label({X,, X5, X, })). This will be substituted by
AND(Instantiate(X,), Label({X;, X })).

- Instantiate(X,) in turn implies OR(X, « 1, AND(DX2 <—DX2—{1},
Instantiate(X,))).

- Nevertheless, the assignment X, « 1 violates the constraint X, # X,
and we will have to revert to AND(DX2 « DX2 -{1}, ...). This will
eventually generate X, « 2.

And we continue to execute goals which in turn may generate other goals, until
every one of them is satisfied.

2.2.5 Defining Iterative Broadening using goals

Figure displays the corresponding goals’ graph for the Iterative Broadening
search method [42]. The goals’ structure is similar to DFS. However, one basic
difference is that there is one more level, namely Broadening, above the ordinary
DFS goals.

* Broadening(Z’, Breadth) := failure, if Breadth > d,

* Broadening(Z", Breadth) := OR(Label(Z", Breadth),
Broadening(.Z", Breadth + 1)), otherwise.

For each Iterative Broadening iteration, the Breadth parameter defines the maxi-
mum number of values that a constrained variable can be successively assigned.
This value is initially 1. The Breadth value cannot exceed d, which in this context
is the maximum cardinality (size) of the domains of all constrained variables. If
Breadth exceeds d, Broadening fails.

Therefore, a second basic difference in comparison with DFS comes into play.
The Instantiate goal takes now two more arguments.
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Broadening(%, Breadth)

/ OR \
Label(%’, Breadth) «. Broadening(Z", Breadth + 1)

AND

T

CurrentBreadth < 0 Instantiate(X, CurrentBreadth, Breadth) - Label(2 -{X}, Breadth)

Figure 2.7: The search tree for Thessaly-coloring

 Instantiate(X, CurrentBreadth, Breadth) := failure, if D, = @,

e Instantiate(X, CurrentBreadth, Breadth) := failure, if CurrentBreadth >
Breadth,

* Instantiate(X, CurrentBreadth, Breadth) := OR(X « v,
AND(D,«D,-{v}, Instantiate(X, CurrentBreadth + 1, Breadth))),
otherwise.

This implements Iterative Broadening’s semantics: The number of consecutive
instantiations to the same variable cannot exceed Breadth.

2.2.6 Search tree exploration

A search tree is a descriptive way to depict every possible assignmentin a CSP,
such as map-coloring. Figure[2.7]|displays the search tree for the Thessaly-coloring
problem. The struck-out nodes have been pruned as nogoods.

Each path from the root (i.e. the uppermost node) represents an assignment.
If the path from the root ends up into a leaf (lowest node), we have a complete
assignment. E.g., the dotted path in Fig. is an alternative form of the solution

assignment in (2.1).
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Each node is extended into two (or more) branches that represent two alter-
native choices. The presented search methods framework naturally supports
distributed search methods. The left and right branches of some selected nodes
can be explored concurrently to reduce the total tree exploration time. There are
many different approaches regarding which nodes should be selected in order to
split their two sub-trees [70, [79]. In Chapter 5] we distribute the search tree using
the MapReduce approach.

2.3 Constraint propagation

Constraint propagation comes along with the aforementioned search methods
and is interchanged with them. It is used to narrow the search trees by removing
nogood values out of the domains of the constrained variables.

2.3.1 Example

Let us say that we have to crack a password (X, X,, X;) consisting of three
decimal digits. In order to guess them, we are given hints for five combinations.

(6,8,2) | One number is correct and well placed
(6,1,4) | One number is correct but wrongly placed
(2,0,6) | Two numbers are correct but wrongly placed
(7,3,8) | Nothing is correct

(7,8,0) | One number is correct but wrongly placed

a b~ wWwNPF

We can naturally model this puzzle as a constraint satisfaction problem of three
variables X, X,, X5, with initial domains D, = D, = D, ={0, 1, 2,...,9}.

To solve this puzzle, it is not necessary to iterate through all the 1,000 candidate
passwords and check them against the given constraints. An intelligent method
would propagate the constraints of the above table.

« From the 4" constraint, we conclude that the domains of the variables do
not contain 7, 3, and 8.

« From the above and the 5" constraint, we conclude that X, =0o0rX, =0.
After all, the values 7 and 8 are incorrect, so 0 is correct, but wrongly placed.

« From the above and the 3" constraint, we conclude that X, =0, as we are
told that 0 is wrongly placed as the second digit.

» From the first two constraints, 6 cannot be a correct digit.

» Therefore, from the 15t constraint, X3 = 2, as neither 6 nor 8 can be correct
digits.

« Finally, from the 2" constraint, X, = 4, because if 1 was correct, we should
assign it either to X, or to X5, which would contradict the above.
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This was a constraint propagation example that directly gave the solution
(X;, X5, X3) = (0, 4, 2). Normally, in other CSPs, constraint propagation should be
combined with a search method. But in any case, it is apparent that propagation
can dramatically reduce the search space, i.e. the set of candidate solutions that
we should check.

2.3.2 Node consistency

Consistency is a very useful property in the road to solve a CSP. It implies that
the values of the domains of each variable have a kind of support with respect to
the CSP constraints.

The most trivial consistency form is node consistency, which implies that the
domain of every variable should support the unary constraint where the variable
is involved.

Example 1. Let X, and X, be two constrained variables with domains D, = {1, 2, 3}
and D, = {5, 6,7, 8,9} and the respective unary constraints C, = ({X,},{(1),(2),(3)})
and C, = ({X,},{(5), (6),(7)}) which can be simply stated as X, < 8.

X, is node consistent as all its values are included in the respective unary
constraint C,. On the other hand, X, in node inconsistent, as the values 8 and 9 in
D, are not supported in C,.

2.3.3 Arc consistency

Definition 2. An arc (X,.,Xj) is arc consistent iff for each v; € D, there exists a
v, € Dj with (v,.,vj) not violating Cij'

Example 2. Let X, and X, be two constrained variables with domains D, = {1, 2, 3}
and D, ={5,6,7,8,9}. Let us assume that the constraint between the variables is
X, =4+X,.

(X,,X,) is arc consistent, as for each of the values 1, 2, 3 in D,, the correspond-
ing values 5, 6, 7 belong to D,.

On the other hand, (X,, X,) is not arc consistent. To prove this, we need just
one value from D, that does not have any supportin D,. Indeed, for the value 8 in
D,, there is not any v, in D, with 4 + v, =8.

If we want to make (X,, X,) arc consistent, we should remove the values 8 and
9 out of D, as they do not have any supports in D,.

This example also illustrates that consistency is not a symmetric property.

In order to check if an arc (X,.,Xj) is arc consistent, we have to iterate through
all the values of D;. The function that does this and removes the unsupported
values from D; is called Revisk.

function REVISE(X’-,XJ)
domain_is_modified « false
for each v, € D; do
value_is_supported « false
for each v, € Dj do

if (v;,v.) € R.., with C; € ¢ then

Il J ijl
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value_is_supported « true
break
end if
end for
if value_is_supported then
continue
else
Remove v; out of D,
domain_is_modified « true
end if
end for
return domain_is_modified
end function

Revise returns true when it has removed at least one value out of a domain.

Coarse-grained vs. fine-grained arc consistency algorithms

Revise function is able to make consistent just one arc. What about making the
whole constraint network arc consistent? There is a whole family of arc consistency
algorithms, and AC-3 is the most prominent and used one.

function AC-3
Q « {(X,.,Xj) | Cij € ¢’}
while Q # @ do
Remove an arc (Xi,Xj) out of Q
if REVISE(X,-,Xj) then
Q « QU{(X, X)) |C, €F, k#j}
end if
end while
end function

As AC-3 initially puts every arc into the Q, all constraints are revised. When
a domain of a variable X; is modified by the Revise function, the modification is
propagated to the other constrained variables which are linked to X; via an arc.

The algorithms, such as AC-3, that propagate the removal of a value out of
a domain to the other linked constrained variables (using a queue of arcs) are
called coarse-grained arc consistency enforcement algorithms.

On the other hand, the algorithms which propagate the removal of a value
using a queue that apart from arcs also contains values of domains, are called
fine-grained arc consistency enforcement algorithms.

Fine-grained algorithms are typically faster than coarse-grained ones. Nev-
ertheless, they require complex data structures to propagate modifications to (a
bigger set of) domain values rather than to (a smaller set of) variables as coarse-
grained algorithms do, and they are unavoidably not used in practice. After all,
Bessiere et al. eventually constructed a coarse-grained algorithm that performs
as fast as its fine-grained counterparts [12].
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Maintaining arc consistency

As illustrated in Fig. 2.8}, arc consistency does not necessarily imply that we
have a solution. Therefore, in order to create a solution, we have to combine
arc consistency with a search method. After all, arc consistency reduces the
search space that a search method—such as depth first search (DFS) or limited
discrepancy search (LDS) etc.—has to explore.

According to the maintaining arc consistency (MAC) methodology, we should
begin searching for a solution by repeating the assignment of values to variables
and by checking every time—e.g. after each assignment—if the constraint network
is arc consistent. If an assignment causes an inconsistency, then it should be
canceled, and another value should be chosen.

2.3.4 Path consistency

Arc consistency each time involves only two variables and checks whether
the values of the one variable are supported by the values of the other variable.
Nevertheless, this has the drawback of focusing only on a part of the CSP and
loses sight of the big picture.

Consider the CSP in Fig.[2.8a] All the arcs are consistent but the CSP itself is
“inconsistent” as it has no solution. That is why this type of consistencies, such as
arc consistency, are called local. Because they affect a subset of the variables or
constraints and do not imply the complete CSP consistency.

Path consistency is another local consistency variant that is broader than arc
consistency in the sense that it involves more than two variables.

Definition 3. The variables X and X; are path consistent if and only if for

every pair of values (v; ) € D x D that satisfies the C constraint (and the
respective unary constramts) and for every path of vanables (X ) there
arevalues(v2 A 1)eD2>< -xD, sothat(v,, ,) (v,, ,) and(v Vi V. )

satisfy the respectlvme binary (and unary) constralnts

Evidently, the CSP in Fig. is path inconsistent, as for each valid combina-
tion of the values of the first two variables, there does not exist a value in the third
variable that supports it.

2.3.5 k-consistency

Node consistency involves one variable, arc consistency has to do with two
variables, and path consistency with three. What about an arbitrary number of k
variables?

Definition 4. The varlablesX X o X , are kR-consistent with respect to the

varlabIeX if and only if for everytuple of values (v i Vi Vi, 1) € D,.1><D,.2><---xD,.k1
that satlsfles the corresponding constraints (of the k- 1 variables) there is a value

Vi, € D so that the extended tuple (v, Vi Vi 1,v,.k) satisfies all the constraints
between the R variables.
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(a) There is no solution

(b) There are two solutions

2)A (X =3))

(c) There is a unique solution

Figure 2.8: Three arc consistent constraint networks
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1-consistency is identical to node consistency, 2-consistency coincides with
arc consistency, and 3-consistency is equivalent to path consistency if the CSP is
binary, as path consistency is only defined for binary CSPs, while 3-consistency
may involve ternary constraint too.

2.3.6 Interchanging constraint propagation with a search method

Constraint propagation is a form of inference [10] and reasoning [11]. It is
an intelligent methodology incorporated in constraint programming solvers. A
common usage in such solvers is to execute constraint propagation after each
search method step, i.e. after each single search method goal execution.

Following the example in section [2.2.4] let us search for a solution of the
“Thessaly-coloring” Problem (1| by applying DFS on it. After each search method
step, we propagate constraints trying to reduce the overall needed steps.

* We begin by adding the Label(2") goal. This will generate the rest of the
goals. Constraint propagation execution does not have now any effect.

* Label(2") generates AND(Instantiate(X,), Label({X,, X3, X,})).

1. The first subgoal is Instantiate(X,) which in turn implies OR(X, « 1,
AND(DX1<—DX1 -{1}, Instantiate(X,))).

This means that we assign the value 1 to X,. Due to the X, # X, and
X, # X5 constraints, constraint propagation removes this value out of
D, and D,.

2. The second subgoal is Label({X,, X5, X, })). This will be substituted by
AND(Instantiate(X,), Label({X;, X, })).

- Instantiate(X,) in turn implies OR(X, « 2, AND(DX2 <—DX2-{2},
Instantiate(X,))).

- We continue to execute goals which in turn may generate other
goals, until every one of them is satisfied.

Please note that in comparison with the example in section we have already,
even in the execution of the first goals, one unnecessary step (X, « 1) truncated
due to constraint propagation, as the nogood value 1 is proactively removed out
of DXz'

2.4 Naxos Solver: Our guinea pig

More than fifteen years ago, we started to create the Constraint Programming
NAxos SoLVeR that supports all the aforementioned classic Constraint Satisfaction
properties. We published it as an open-source project and today it is used by a
broad audience

To ensure that the contributions of this dissertation will be used in practice, we
first applied and tested them in this real solver. Otherwise, our proposals would

3https://github.com/pothitos/naxos
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be “like shooting an arrow into the air and, where it lands, painting a target” as the
chemist Homer Burton Adkins (1892-1949) once said.

2.4.1 Constraints from a C++ programmer’s perspective
The N Queens problem

Definition. In the N queens problem, we should place N queens on an N x N
chessboard, so that no queen is attacked. In other words, we should place N
items on an N x N grid, in a way that no two items share the same line, column
or diagonal. Figure [2.9|displays an example for N = 8. The eight queens are not
attacked.

In each column 0,1, ..., N - 1 we will have a queen. It remains to find out the
line where each queen will be placed. Therefore, we ask to assign values to the
variables X; with 0 < X; < N - 1, where X; is the line on which the queen of column i
will be placed.

Regarding the constraints, first of all, no two queens should share the same
line, i.e.

Xz X, Viz]. (2.2)

They should not also share the same diagonal, consequently
Xl.+i¢Xj+j and X,.—i:th—j,Vi#j. (2.3)

X; - i corresponds to the primary diagonal and X; + i to the secondary diagonal of
the queen of column i.

Code. Inthe solver code, the variables X; are represented by the array Var, that
according to should have different elements. Concerning (2.3), we create
two other arrays, namely VarPlus and VarMinus, with the elements X; +i and
X; - i respectively. For these arrays we will also declare that their elements shall
be different between them. The relevant C++ code follows.
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6 W
; iy

Figure 2.9: Eight queens not attacking each other

int N = 8;
NsProblemManager pm;

NsIntVarArray Var, VarPlus, VarMinus;

for (int i = 0; i < N; ++i) {
Var.push_back(NsIntVar(pm, 0, N-1));
VarPlus.push_back(Var[i] + i);
VarMinus.push_back(Var[i] - i);

}

pm.add (NsA11Diff (Var));

pm.add (NsA11Diff (VarPlus));

pm.add(NsA11Diff (VarMinus));

pm.addGoal (new NsgLabeling(Var));
while (pm.nextSolution() != false)
cout << "Solution: " << Var << "\n";

SEND + MORE = MONEY

Another example is a known cryptarithm problem.

Definition. In cryptarithms we have some arithmetic relations between words,
such as SEND + MORE = MONEY . Each letter of the words represents a specific
digit from O to 9; thus, each word represents a decimal number. Two different
letters should not represent the same digit. E.g. for the equation SEND + MORE
= MONEY, we will put the same digit in the positions where E appears. The same
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applies for the rest of the letters, that should however be assigned different digits
than the one for E. After all the assignments, the relation of the cryptarithm should

be valid.

Code. The problem declaration for the Naxos SoLver follows.

NsProblemManager pm;

NsIntVar S(pm,1,9), E(pm,0,9), N(pm,0,9),

NsIntVar send

M(pmglgg), O(pm)o:g): R(pm’oig)’

1000*S + 100*E

NsIntVar more = 1000*xM + 100%0

NsIntVar money

10000%M + 1000*0 + 100*N

pm.add(send + more == money) ;

NsIntVarArray letters;

letters.
letters.
letters.
letters.
letters.
.push_back(0) ;
.push_back(R) ;
.push_back(Y);

letters
letters
letters

push_back(S);
push_back(E) ;
push_back(N) ;
push_back(D) ;
push_back (M) ;

pm.add (NsAl1Diff (letters));

pm.addGoal (new NsgLabeling(letters));
if (pm.nextSolution() != false) {

cout << " " << send.value() << "\n"
<< " + " << more.value() << "\n"
<< " = " << money.value() << "\n";

}

If we execute the code, the result is

9567
+ 1085
= 10652

How do we state and solve a problem?

D(pm,0,9),
Y(pm,0,9);

+ 10%N + D;

+ 10*R + E;
+ 10*E + Y;

)

In the previous sections we stated some problems-examples. But what are
the steps in order to state and solve another problem? Our code is summarized
into the following triptych.

1. Constrained variables (NsIntVar) declaration, together with their domains
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2. Constraints statement (pm.add(-))

3. Goals declaration (pm.addGoal (new NsgLabeling(-))) and search for
solutions (pm.nextSolution())

The first thing to do is to create a problem manager (pm) to store the whole
constraint network. The declaration is

NsProblemManager pm;

Next, we declare the constrained variables of the problem. Remember that
while a simple variable (e.g. int x) stores only one value (e.g. x = 5), a con-
Strained variable stores a range or, better, a domain. E.g., with the declaration
NsIntVar V(pm,0,5), the domain of V is the integer values range [0..5].

When there are many constrained variables, then we use constrained variables
arrays NsIntVarArray, as in the N Queens problem. E.g.

NsIntVarArray R;

The array R is initially empty. It is not possible to define a priori neither the array
size, nor the included constrained variables domains. We can do this through an
iteration

for (i = 0; i < N; ++1i)
R.push_back(NsIntVar(pm, min, max));

In place of min and max we put the minimum and maximum domain value,
respectively. Next, we declare the existing constraints through pm.add () calls...

Before the end, if we solve an optimization problem, it remains to declare the
parameter to optimize. When we find out this parameter-variable, we will pass it
as an argument of pm.minimize (-). This method is unnecessary when we seek
for any solution of the problem.

We can now add a goal to be satisfied through the statement

pm.addGoal (new NsgLabeling(R));

This goal instructs the solver to assign values to the constrained variables of
the array R. If we do not state this goal, the solver will not instantiate the variables
R[i], but it will only check the satisfaction of the constraints between ranges, and
the variables will not become fixed.

Finally, we execute pm.nextSolution() to find a solution. This function is
called inside a loop; every time it returns true, we have another unique problem
solution.

If we have previously called pm.minimize (- ), the solver guarantees that each
new solution will be better from the previous one. In case pm.nextSolution()
returns false, then either the solution cost cannot be further improved, or there is
not any other solution. Thus, we should have stored somewhere the last solution
(and perhaps its cost too) in order to print it in the end, as in the following code for
example
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NsDeque<NsInt> bestR(N);

while (pm.nextSolution() != false) {
// Record the current best solution
for (i = 0; 1 < N; ++i)
bestR[i] = R[i].value();

// Print the best solution...

2.4.2 Search methods as C++ classes

In order to facilitate or, better, to guide search, a goals mechanism has been
implemented in the solver. The application developer that uses the solver can
declare their own goals, or they can use the built-in ones. A goal often makes an
assignment to a constrained variable, or it removes a value from the domain. If
search reaches a dead-end, the solver automatically cancels the goals that guided
to it, and the constraint network with its variables is restored back to the state
before these goals were executed.

Generally speaking, a goal can assign or remove values to one or more vari-
ables, or it can be used to choose a variable in order to be successively assigned
a value. In this way it defines the search method. While a goal terminates, it can
optionally generate another goal; this possibility provides recursion characteristics
to the goals mechanism. Last but not least, there are also the AND and OR meta-
goals. They are called “meta-goals” because each of them is used to manipulate
two other goals, namely subgoals. An AND-goal succeeds if its two subgoals
succeed both, while an OR-goal succeeds if one or more of its subgoals succeed.

It is worth to mention that the OR-goals are also known as choice points.
Indeed, they are points where we have two alternatives, that is points where the
search tree branches off. During the execution of an OR-goal, its first subgoal
is chosen, and if it finally fails, the solver cancels all the chain modifications that
were made on the domains of the variables (after the first subgoal execution);
the second subgoal is then tried. If the second subgoal also fails, then the whole
OR-goal fails.

Object-oriented modelling

The declaration for the basic goal class in Naxos SoLveRr follows.

class NsGoal {
public:

virtual bool isGoalAND(void) const;
virtual bool isGoalOR(void) const;
virtual NsGoal* getFirstSubGoal(void) const;
virtual NsGoal* getSecondSubGoal(void) const;
virtual NsGoal* GOAL(void) = O;

+;
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The NsgAND and NsgOR meta-goal classes derive from the above NsGoal
class. NsgAND and NsgOR constructor functions take two arguments (of NsGoalx
type) that represent their two subgoals. Every NsGoal member-function—apart
from GOAL ()—has to do with meta-goals. The application developer that wants
to define their own goals, has to take only care of GOAL().

Every custom goal defined by the application developer should be a class that
(directly or indirectly) extends NsGoal. Subsequently, function GOAL () should be
defined in every goal class.

GOAL () is a critical method, as the solver executes it every time it tries to
satisfy a goal. This method returns a pointer to another NsGoal instance, i.e. it
returns the next goal to be satisfied. If the pointer equals to 0, this means that the
current goal succeeded (was satisfied) and thus no other goal has to be created.

Therefore, an example follows, illustrating goals already built in the solver, as
they are widely used. These goals describe the search method depth-first-search
(DES).

class NsgInDomain : public NsGoal {
private:
NsIntVar& Var;

public:
NsgInDomain(NsIntVar& Var_init)

: Var(Var_init) { }

NsGoal* GOAL(void)

{

if (Var.isBound())

return O;
NsInt value = Var.min();
return (new NsgOR(new NsgSetValue(Var,value),
new NsgAND(new NsgRemoveValue(Var,value),
new NsgInDomain(*this))));

}

};

class Nsglabeling : public NsGoal {
private:
NsIntVarArray& VarArr;

public:
Nsglabeling (NsIntVarArray& VarArr_init)
: VarArr (VarArr_init) { }

NsGoal* GOAL(void)
{
int index = -1;
NsUInt minDom = NsUPLUS_INF;
for (NsIndex i = 0; i < VarArr.size(); ++i) {
if (!'VarArr[i].isBound() && VarArr[i].size() < minDom) {
minDom = VarArr[i].size();
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index = i;
}
}
if (index == -1)
return O;

return (new NsgAND(new NsgInDomain(VarArr[index]),
new Nsglabeling(*this)));

};

Regarding the practical meaning of the example, when we ask the solver
to satisfy the goal NsgLabeling(VarArr), we expect that all the variables of
VarArr will be assigned values. Thus, the function GOAL() of NsglLabeling
chooses a variable (specifically, the one with the smallest domain size according
to the fail-first heuristic). Then it asks (via the goal NsgInDomain that assigns
to a variable its domain minimum value) to instantiate the variable and to satisfy
the goal this. This goal—that refers to a kind of “recursion”—constructs another
NsgLabeling instance, that is identical to the current one. In fact, this tells the
solver to assign values to the rest of VarArr variables. When GOAL () returns 0,
we have finished.

NsgLabeling chooses the next variable to be instantiated, and NsgInDomain
chooses the value to assign to this variable. More specifically, it always chooses
the minimum value of the domain of the variable. Then it calls the built-in goal
NsgSetValue that simply assigns the value to the variable. If it is proved af-
terwards that this value does not guide to a solution, it is removed from the
domain by the goal NsgRemoveValue, and another value will be assigned by
NsgInDomain(*this).

Usually, when we face difficult and big problems, we should define our own
goals, like NsgLabeling and NsgInDomain. The aim is to make search more
efficient by using heuristic functions to take better decisions and choices tailored
to specific difficult CSPs.

Variable and value ordering heuristics

The decisions about which variable to instantiate next and which value to
assign to it are called heuristics, and they are crucial to the efficiency of a search
method.

In the above implementation of the DFS goals, we chose fail-first as the variable
ordering heuristic, which means that we prefer to instantiate first the variable having
the minimum domain size. Another variable ordering heuristic known as degree is
to choose the variable with the maximum edges (connections to other variables
via constraints) in the constraint network.

Having chosen a variable, the next decision to make involves the value ordering
heuristic. In the above DFS goals, we always select the minimum value out of the
domain of a variable. This is also called a lexicographical ordering.

Such kind of ordering is fast but dummy. Alternatively, one could choose the
value that is consistent to the maximum number of values belonging to the other
variables.
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3. RELATED WORK

In my own field, it once was possible for a grad student to learn just
about everything there was to know about Computer Science. But
those days disappeared about 30 years ago.

Donald Knuth, Things a computer scientist rarely talks about, 2001

Having introduced Constraint Programming and CSPs, we are now going to step
into techniques found in the bibliography that are more closely related to our
contributions that will follow this chapter (namely contributions in Heuristics and
Search in Chapter [4] Distribution in Chapter |5, Propagation in Chapter [6).

3.1 Heuristics exploitation in related work

In the road to find a solution to a CSP, Constraint Programming solvers usually
interchange search methods and constraint propagation.

» Search methods define the strategy of assigning values to the variables.

» Each time an assignment is made, constraint propagation assures that the
other variables and their domains support the assignment.

Heuristics come into play when a search method has to decide (i) which variable
is going to be instantiated next and (ii) which value out of its domain to assign to
the variable. In the next two sections we describe important variable and value
ordering heuristics.

3.1.1 Variable ordering heuristics

The most known variable ordering heuristic is the fail-first one, also known
as minimum remaining values (MRV) or most constrained variable heuristic. It
suggests that the variable having the minimum size of domain should be instanti-
ated first. Nevertheless, more sophisticated approaches have been developed so
far [45].

Impact-based search

The idea behind the Impact-Based Search (IBS) heuristic is to instantiate first
the variable that will guide to the removals of as many values as possible out of
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the domains of the other variables due to constraint propagation. More formally,
this heuristic tries to minimize the Cartesian product of the domains D, x D, x--xD_
when propagation occurs due to an assignment.

A straightforward implementation of this is to consecutively assign each value
v € D, to the variable X and record the impact of each assignment after constraint
propagation takes place. This should be done for every variable, and an aggregate
score for each variable will be created. The variable with the highest score would
be chosen for instantiation.

Propagating constraints without actually having decided to make an assignment
is rather costly. What IBS proposes is to record the history of the impact of every
previous assignment and expect that they will have the same impact in the future.
Conclusively, IBS does not propagate constraints by itself, but it uses the statistics
of the past constraint propagations.

Activity-based search

The variable ordering heuristic of Activity-Based Search (ABS) exploits even
more statistics gathered during constraint propagation. For each search tree
node, when a variable is affected by constraint propagation, its relevant score
is increased. Else, if it remains unaffected, its score is decreased by a given
factor. The variables with the highest scores are favored and will be the next to
be instantiated.

The dom/wdeg heuristic

While the heuristics of IBS and ABS keep metrics for each value and each
variable respectively, the dom/wdeg heuristic keeps statistics for the constraints.
Each constraint ¢ has a weight w(c) which is equal to 1 plus the number of times
that the constraint ¢ could not be satisfied.

Furthermore, a weighted degree wdeg(x) metric is defined for each constrained
variable x as the sum of all w(c) where c is a constraint that involves the variable
x plus at least one more unassigned constrained variable.

Having defined the above, the dom/wdeg variable ordering heuristic favors
the constrained variable x with the smallest |D, | /wdeg(x) ratio to be instantiated
first.

Arecentimprovement of this heuristic suggests that each time we cannot satisfy
a constraint ¢, we do not just increase the w(c) weight by 1 but by a factor that
depends on the number of the unassigned constrained variables that ¢ involves
and their current domain sizes [95].

Conflict history search

All the above heuristics did not consider involving time in their scores. Habet
and Terrioux recently had the idea not only to record the failures of the constraints,
but also to compute an exponential recency weighted average (ERWA) of these
failures [45]. This means that during their Conflict History Search (CHS), we do
not just accumulate failures of constraints, but we stress the importance of the
constraints that tend to fail more recently.
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How much recent constraint failures are favored? This depends on the factors
of the ERWA formula. Depending on these factors of this moving average, we can
favor more or less the recency of the failures. The ideal ERWA factors depend on
the CSP parameters and cannot be known before solving it.

Here comes the multi-armed bandit (MAB) framework that allows us to use
many different ERWA factors on the fly and exploit the more efficient ones [20].

Combinations using the multi-armed bandit framework

Imagine that you are in a casino and you have to choose to play among four
slot machines. In fact, you cannot know a priori which one will give you back the
most money.

This is the situation regarding the aforementioned heuristics; no one is a clear
winner. In such cases, the multi-armed bandit (MAB) framework can be employed.
It is a strategy to experiment with the arms of many “slot machines” and maximize
your reward.

Xia and Yap recently used MAB to choose between IBS, ABS, and dom/wdeg
heuristics at each search tree node [99]. Furthermore, Wattez et al. also included
CHS as one more arm to choose from. In their work, each heuristic-arm is chosen
when search restarts and not on a search tree node level [94].

3.1.2 Value ordering heuristics

Least-constraining value (LCV) is a well-known value ordering heuristic. It
suggests choosing the value (to assign to a constrained variable) that will trigger
the removal of as few as possible values from the domains of the other variables
during constraint propagation.

Another value ordering heuristic specially designed for Constrained Optimiza-
tion Problems (COPs) that has been recently proposed is to choose the value that
will guide to the biggest improvement of the cost function [31].

3.1.3 Heuristics in deterministic search methods

In constructive search, one can build a solution either with a deterministic/
systematic search method or by making one-by-one random assignments. Do
these methods exploit heuristics and how?

To our knowledge, existing search methods such as limited discrepancy search
(LDS) use heuristics only to order the possible assignments and do not exploit
the difference of the one heuristic estimation to another, but only their rank [75].
For example, the iterative broadening method initially explores only a limited
children’s number for each search tree node [42]. Of course, in its first iterations,
it chooses to visit only the children with the highest ranks. Credit search [7] and
limited assignment number (LAN) [8] are other deterministic methods that also
take into account the rank of the heuristic estimations and not the heuristic values
themselves.

Last but not least, there are also methods that make the assumption that the
heuristic function is more reliable as the search tree node depth increases. E.g.,
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depth-bounded discrepancy search (DDS) allows to override a heuristic estimation,
only when we have not yet reached a specific search tree depth [91]. Finally, there
are some methodologies that take into account two or more heuristic functions
and learn as the search proceeds which heuristic is the best to use [100].

3.1.4 Heuristics in random search methods

On the other hand, stochastic search methods completely ignore heuristics,
as they choose to make an assignment at random [48]. For example, depth first
search with restarts traverses the search tree making random choices, and when
a specific time limit is reached, it restarts from the beginning.

3.1.5 Local search methods

The aforementioned search methods belong to constructive search, as they
build a solution from scratch, step by step, by assigning a value to a variable each
time.

On the other hand, there are non-systematic indirect search methods, also
known as local search methods, which assemble a candidate solution, and then
try to fix it by repairing conflicting sets of variables and constraints. Local search
iteratively tries to repair the candidate solution, in order to satisfy the constraints
a posteriori [46]. This is especially useful when solving difficult CSPs, and we
are therefore happy just to find a solution, without usually caring if all candidate
solutions will be examined.

Stochastic local search makes a random repair action in each step. There are
many other local search variants.

Hill climbing. A well-known variant is hill climbing, also known as iterative
improvement. In each step, it changes only one variable assignment (1-exchange).
Normally, we make the change which will reduce the violated constraints number as
much as possible [25] and this is called the min-conflicts local search heuristic that
has been successfully applied in scheduling and to a plenty of other problems [2].

Simulated annealing. The above practice is prone to be trapped into local
minima. This means that we can end up in a candidate solution that cannot be
improved by modifying only one assignment anymore. In this case, we have to
escape the current local minimum by making a random step.

Simulated annealing methodology permits random steps to skip local minima
while a parameter called temperature is high; as time passes by and temperature
drops, the method becomes less tolerant in random steps, especially if their
evaluation is poor [28, 49]. In this work we attempt to bring this (local search)
approach in constructive search methods.

3.1.6 Heuristics and probabilities

When a search method has to choose which constrained variable to instantiate
next or which value should be assigned to the variable, heuristics come in handy.
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Heuristics are normally used to order the available choices: the choice with the
highest rank is mostly favored. Nevertheless, there is related work where a choice
with a lower rank can also be favored. This can be accomplished by transforming
heuristic values into probabilities.

Heuristic-biased stochastic sampling

In 1996, Bresina transformed the heuristic ranks into probabilities via the so-
called heuristic-biased stochastic sampling (HBSS) [17]. He provided a set of
various decreasing functions bias(r), e.g. 17 or e" etc., that take a specific integer
choice rank r € {1, 2,...} and return a number that corresponds to the probability
of the choice to be selected.

Example 3. Suppose that we have to choose a value to assign to a constrained
variable. For example, we may have to assign to the variable X a value out of its
domain D, = {v,,v,,v,Vv,}. Which one is better?

A heuristic comes into play to evaluate the four choices. Let us say that the
respective heuristic values are h, = 8, h, =9, h_ = 6, and h; = 7. Hence, the
respective ranks of the choices are r, =2, r, =1, r_ =4, and r, = 3. According to
the heuristic function the choice b prevails.

Normal search methods would choose always option b, i.e. to assign v, to X.
Nevertheless, as mentioned above the HBSS method would make this choice
non-deterministic and assign probabilities to each choice.

In this example, if we define bias(r) = 17 the respective probabilities for the

choices a, b, ¢, d would be 3, 7, 7, 3, each one divided by ¥ bias(r). Thus, we
have P, = 0.24, P, = 0.48, P_ = 0.12, P, = 0.16. Again, it is more probable to
make choice b, with a 48% probability. But the alternative choices have significant
probabilities too.

Value-biased stochastic sampling

Cicirello and Smith improved HBSS by introducing the value-biased stochastic
sampling (VBSS). The bias function now takes as argument the heuristic value
itself [22].

Example 4. Let us recompute the probabilities for the four choices in Example 3]
using the VBSS methodology this time. We just need to substitute the bias(r;)
function in the above example with the h; value itself.

Therefore, the corresponding probabilities would be computed as h;/ ¥ h; and
we will get the probabilities P, = 0.27, P, = 0.30, P, = 0.20, P, = 0.23.

Note that the probabilities to make one of the choices a and b are almost
equal. This is due to the fact that h, and h, are almost equal too, and these values
directly affect the respective probabilities.

Heuristic equivalence

On the other hand, Gomes et al. exploit the so-called heuristic equivalence
to equate the choices with the highest heuristic values [43]. In this way, we can
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exclude the choices with the lower heuristic values and select at random amongst
the choices with the most prevailing values.

Example 5. Again, let us consider the heuristic values of Example [3jand recompute
the probabilities for the respective choices using the heuristic equivalence this
time. Also, let us suppose that we set a threshold value 7.5. Every heuristic value
above the threshold will be considered as “high.”

Therefore, the heuristic values below 7.5 will be considered as low, and the
corresponding choices ¢ and d will be discarded, with zero probabilities.

The remaining choices a and b would be then selected with equal probabilities
P,=P,=0.5.

Skewed probability distributions

Random search methods use the uniform distribution to select between the
candidate choices. Gracas et. al have recently employed the geometric and
the triangular probability distributions instead, also known as skewed probability
distributions or non-symmetric. They first short the candidate choices according
to a given criterion and then map each choice to an already given decreasing
probability distribution. Therefore, the first candidate choice has the greatest
probability to be selected and the last candidate solution has the lowest probability
to be made [44].

3.2 Distributing Constraint Programming with MapReduce

In 2004, Jeff Dean and Sanjay Ghemawat published MapReduce, a framework
initially designed for Google’s very large database [27]. This paradigm synchro-
nizes a plethora of machines, so as to read the whole Internet archive and “mine”
information as needed.

3.2.1 Mappers and reducers

The cooperation of so many machines-nodes is viable, as MapReduce adopts
a specific data flow architecture. This implies that there are some restrictions, as
broadcasting a message and sharing data between nodes are not permitted.

The available computers are divided into two groups: The Mappers process
the input. Each Mapper is assigned a part of the input. Then, it emits tuples such
as (r,,s,) (r,,s,), etc. Each r; denotes the key field of the tuple, while s; contains
the rest of the tuple’s fields.

The second machines group is the Reducers which accept the tuples. De-
pending to r;, each tuple (r;, s;) is directed toward a specific Reducer.

Example 6. A basic introductory MapReduce application is used for counting the
occurrences of each word in a text file.

1. For example, let us say that a text file has the content“design is not just
what it looks and it feels like; design is how it works” [90].

N. Pothitos 62



Constraint Programming: Algorithms and Systems

2. Let us say that a MapReduce system with two mappers and two reducers
Is responsible to count how many times each word appears in the text, e.g.
design,?2.

3. The text is split into parts, e.g. “design is not just what it looks and
it feels like” and “design is how it works”.

4. Each part is assigned to a specific mapper. Let us say that the first mapper
will process the first part and the second mapper will process the second
part of the text.

5. The first mapper emits the tuples for the occurrences of the words of
the first part, in the form (word, n), where n is the occurrences number
of the word: (design,1), (is,1), (not,1), (just,1), (what, 1), (it,2),
(looks, 1), (and, 1), (feels, 1), (Like, 1).

6. Concurrently, the second mapper emits the tuples that correspond to the
second part: (design, 1), (is, 1), (how, 1), (1t, 1), (works, 1).

7. The first field of each tuple is its key. Two tuples with same keys are sent
to the same reducer. Generally speaking, each reducer is responsible to
process specific keys. In this example, the first reducer processes the keys
having a first character in the range a—m and the second reducer processes
the tuples with keys that start with n—z.

8. Each reducer outputs the aggregate occurrences for the words-keys that
it is responsible to process. The first reducer outputs (and, 1), (design, 2),
(feels, 1), (how, 1), (is,2), (it,3), (just, 1), (Like, 1), (Looks,1). The
output of the second reducer is (not, 1), (what, 1), (works, 1).

When someone administers a cluster of computers, it is obviously more easy
and more secure to provide access to the machines via a MapReduce framework,
rather than set up a network topology for the specific user’s needs and grant
him/her with the necessary privileges to use it.

For fields like Constraint Programming, there may exist more efficient dis-
tributed architectures and environments, usually proprietary and unavailable to
experiment with. Nevertheless, MapReduce prevails as a standard in parallel/
distributed computation and this work is a step toward exploiting it and adapting
to it in order to solve Constraint Satisfaction Problems (CSPs).

3.2.2 Applications

MapReduce is an established framework to efficiently manage thousands of
processors to complete tasks in parallel, which would have finished in many days
in a sequential environment. For example, it has be used to explore social network
graphs [1, 40] and it has been effectively applied to mine medical information out
of large search engines logs [41].

There are many benefits of employing MapReduce.
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* A MapReduce system, like Hadoop for example, will allocate by itself the
CPU cores and/or the machines in a cluster of computers. There is no worry
to invoke the appropriate number of threads-workers or communicate with
other PCs to send them work.

* From the above, it is obvious that MapReduce supports both parallel and
distributed environments.

* It is more easy and secure for a cloud administrator to provide access to
their machines through a MapReduce interface, instead of allowing the
implementation of ad hoc communication strategies among the machines.
In some cases, there is no alternative except from adopting MapReduce.

» The no-communication between mappers restriction makes MapReduce
highly scalable and capable of utilizing huge data centers.

These are some of the reasons why we leverage on a plain MapReduce approach.
Constraint Programming has been employed to improve the coordination and
job scheduling for the dozens of mappers and reducers spread across many
processors and machines [63]. Nevertheless, our contribution focuses on how we
can employ MapReduce to boost Constraint Programming and not vice versa.

3.2.3 In the battle against the pandemic

The scalability of MapReduce enables scientists and organizations to process
terabytes of data coming from multiple sources in the pandemic era. The data
may refer to

» the genome of the viruses and the proteins produced by them [26]
* infection and fatality measurements across the globe [64]

* human behaviors such as social distancing in public areas.

For example, there is a surveillance system designed to massively process
live video streams from public areas and warn the citizens that do not keep the
minimum distance needed between them [59]. Other researchers use Hadoop
which is in turn based on MapReduce to process a large number of posts in social
media and extract opinions and sentiments related to the COVID-19 virus [30].

3.2.4 OR-parallelism vs. CSP partitioning

Constraint Programming independent search phase can be parallelized in
several fashions. In the so-called OR-parallelism the search space (tree) is
partitioned, and each processor-worker is assigned the task of exploring a specific
part. If the workers use different search methodologies, we have a portfolio
OR-parallelism [37].

On the other hand, there is another kind of parallelism where each processor
is responsible for a certain division of the CSP, i.e. a number of constraints or
variables, and it may check the validity of its constraints division or enforce a level
of consistency between its variables division. In this case, communication between
processors is unavoidable in order to ensure the whole CSP consistency [80].

N. Pothitos 64



Constraint Programming: Algorithms and Systems

3.2.5 A MapReduce and CP combination and other related work

MapReduce is closer to OR-parallelism, as Mappers are not permitted to
communicate with each other. Régin et al. introduced MapReduceCP, the first
known MapReduce and Constraint Programming (CP) combination [78]. In rough
lines, they break up the search space into many pieces; the many fragments allow
the more balanced search space distribution over Mappers. The Reducers’ role in
MapReduceCP is trivial, as they simply “echo” the solutions from the Mappers.

Régin et al. showed that MapReduceCP is superior to work-stealing [21], a
dynamic search space partitioning schema implemented in Gecode [36], in which
each idle worker consecutively sends messages to other workers in order to
acquire a part of their current job.

Work-stealing is a non-MapReduce methodology that has a significant commu-
nication overhead between its workers, and this is something SelfSplit, another
parallel methodology, tries to mitigate [33]. SelfSplit deterministically labels the
search tree nodes with different “colors” (tags) without necessarily visiting them.
Afterwards, each worker is responsible to process only the nodes of a specific
color. The lack of communication between the workers has its ups and downs,
as if most of the nodes of the search tree are labeled “red” than “green,” then the
work to be shared will be unbalanced.

Apart from the MapReduce perspective, CSPs have been also viewed as
embarrassingly parallel problems [77,[79] by decomposing them into many smaller
CSPs. This is achieved by partitioning the search space, i.e. by splitting the
Cartesian product of the domains of the constrained variables.

3.2.6 Partitioning the search space

The normal MapReduce schema divides a large file into small pieces; each
piece is read by a Mapper. In CP we have not files but a search space, i.e. the
Cartesian product of the domains D, x D, x - x D .

Generally speaking, if the size of each domain D; is d, we can partition the
search space into d™ different search spaces {v, }x{v,}x-x{v_}xD_ . xD_  x-xD ,
where v; € D;.

Example 7. If we have a CSP with the variables X,, X,, X5, and X,, with the
corresponding domains D, = D, = D; = D, ={1,2,3}, i.e. d = 3, we can partition
the search space into e.g. d? = 9 divisions:

{1}"{1}"D3"D4 {2}"{1}"D3"D4 {3}"{1}XD3"D4

(1}x{2} Dy =D, | {2}x{2)xDy =D, | {3}%{2}xD,xD,

{1}=x{38}xDyxD, | {2}x{3}xDyxD, | {3}x{3}xD;xD,

In MapReduceCP this is how the search space is distributed over the Map-
pers [78]. This way of splitting the search spacel/tree is a top-down approach. For
example, in a complete binary search tree, if the tree is split in two parts, the top
two subtrees will be chosen. This seems to be an ideally balanced choice, as a
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Figure 3.1: An asymmetric LDS binary search tree

complete tree is symmetric, and its two top left and top right subtrees are equally
sized.

However, this is not always the case. Some search trees are unbalanced as
the one in Fig.[3.1] There are at least two reasons for this asymmetry:

 Either some nodes are nogood, that is they do not lead to a solution because
they violate a constraint, and there is no need to explore them further,

 or the search method is not complete and decides on purpose not to visit
every search tree node.

Limited Discrepancy Search (LDS) is an example of a constructive search method
that initially traverses a search tree like the one in the above figure [75].

In Chapter[5, our contribution will be to split any search tree (traversed by ad
hoc search methods) by predicting/simulating the search tree topology, without
actually traversing it. The generated partitions are then driven into a MapReduce
system, which is today widespread in modern cloud infrastructures.

3.3 Constraint propagation related work

At the beginning, given a specific CSP, one would normally like to make sure
if it has any solution or not. This information will be available only by using a
standard constructive search method. As, in the worst case, these methods may
exhaust all the candidate solutions of a CSP, it is important to make them more
intelligent and prune the search space.

Starting from the 70’s, the research on constraint propagation goes hand
in hand with Constraint Programming research [56, 192]. Throughout all these
years, there is a trend to invent stronger and stronger constraint propagation
methodologies.

There are propagation methodologies tailor-made for local search [68]. Never-
theless, the focus of constraint propagation research is on constructive search
methods.

3.3.1 Learning from mistakes or preventing them?

Look back techniques in backtracking search methods aim to avoid repeating
the invalid assignments of the past. Backjumping is a well-known look back
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technique, but it is not used in solvers, as other techniques clearly outperform it
even in simple CSPs [3]. Nogood learning is a more promising look back technique
that, based on the invalid assignments of the past, adds new constraints to avoid
the invalid combination of assignments in the future [89]. However, these new
constraints have the drawback of making the constraint network increasingly
complex.

On the other hand, look ahead techniques are more proactive in the sense that
they remove values out of the domains of the constrained variables before reaching
an inconsistent assignment. Maintaining arc consistency (MAC) during search is
the queen of all look ahead techniques [11]. According to MAC, each assignment
to a domain of a variable is followed by an arc consistency enforcement method,
such as the known optimal AC-2001 algorithm [12]. The optimality of AC-2001
was proven for enforcing arc consistency after a single assignment. But when we
call repeatedly AC-2001 during search, after each single assignment, in order to
maintain arc consistency, there is still room for improvements [54].

3.3.2 The importance of arc consistency

Arc consistency also plays a key role in splitting the CSPs into two large
categories [11].

1. The tractable ones that can be solved in polynomial time, simply by main-
taining arc consistency.

2. The intractable ones that are NP-complete problems and require an ex-
ponential backtracking algorithm to prove whether they have a solution or
not.

Related work has defined the properties of the constraint network that suffice to
categorize a CSP as tractable or intractable [24]. Furthermore, it has been recently
proven that a CSP is tractable only if it contains specific types of constraints [18,
102].

In our work, for the sake of simplicity, we consider arc consistency only for binary
constraints. The extension of arc consistency for constraints involving more than
two variables is called generalized arc consistency (GAC). Contrary to conventional
wisdom, there are studies that we can transform non-binary constraints into binary
ones and enforce plain AC to them without losing the efficiency of GAC [93].

3.3.3 Higher-level consistencies (HLCSs)

Arc consistency filters many futile values out of the domains of the constrained
variables. But there are even stronger consistency levels than arc consistency.

These are the so-called higher-level consistencies (HLCs) and, while AC
examines one constraint at a time, HLCs consider two or more constraints simul-
taneously. This makes them too expensive to be used in practice [5]. To mitigate
the HLC overhead, there are hybrid strategies that go back and forth from HLC to
AC [98]. Even machine learning has been employed to dynamically choose which
consistency level is more efficient [4].

67 N. Pothitos



Constraint Programming: Algorithms and Systems

Table constraints: A prominent field for HLCs

Binary CSPs are very useful for theoretical analysis, as they are defined simply
and every non-binary CSP can be converted into a binary one [81]. The analogue
for the constraints is the so-called table constraints, in the sense that they are
also simply defined, and every non-table constraint can be converted into a table
constraint.

A table constraint is nothing more than the literal statement of a constraint
as in Definition [Il For example, let the variables X and Y have the domains
D, = D, ={1,2,3,4}. The constraint X # Y is an “implicit” constraint that can be
transformed into an “explicit” table constraint of the form (X, Y) € {(1, 2), (1, 3), (1, 4),
(2,1),(2,3), (2,4), (3,1), (3,2), (3, 4), (4,1), (4,2), (4,3)}. Admittedly, the latter is
a clumsy way to state a constraint, not to mention the complexity overhead and
counterintuitiveness while implementing it as a computer software.

On the other hand, from a theoretical and mathematical point of view, table
constraints are a useful tool to group together every single kind of constraint. No
need to apply a different validation or revision function for the constraints X # Y
and Y = Z + 5 for example.

There have been proposed tons of higher-level consistencies for table con-
straints in the bibliography [101]. Nevertheless, similarly to the binarization of
CSPs, the “tabularization” of constraints is seldom applied in practice.

Back and forth to HLCs

Furthermore, the higher-level consistencies (HLCs) themselves are rarely used
in practice for two main reasons.

» HLC methodologies require extra implementation effort in order to be used
in Constraint Programming solvers, and they are usually complicated.

» HLC is not only complex in terms of implementation, but it also costs in terms
of time. Itis not a secret anymore that if we compare AC vs. HLCs for a wide
range of problems, AC is usually faster [86].

According to recent related works, the remedy to mitigate this unexpected
behavior is to employ an HLC instead of AC on the fly, only under specific conditions.
In this context, Kostas Stergiou has classified all the so-called adaptive constraint
propagation methodologies into three categories: node, variable, and value-
oriented adaptive propagation [86].

Node-oriented adaptive propagation. While we traverse the search tree, node-
oriented adaptive propagation methods decide separately for each search tree
node if they are going to enforce arc consistency or another consistency level.

Variable-oriented adaptive propagation. While the AC vs. HLC decision in the
node-oriented adaptive propagation algorithms affects all the constrained variables
each time, the variable-oriented adaptive methodologies decide separately for
each variable the consistency level that this variable will have towards the other
variables.
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Value-oriented adaptive propagation. Finally, if we take a separate decision
for each value of each variable regarding which propagation algorithm we will use
in order to seek a support for it, then our adaptive methodology is classified as
value-oriented.

3.3.4 Toward more relaxed consistencies

In this work, we are moving toward the opposite direction, and instead of
inventing an HLC and then trying to enforce it in practice only under certain
conditions, we invest on bounds consistency (BC), a looser consistency level than
arc consistency (AC).

We do not change consistency levels on the fly. We stick to one consistency
level at a time (AC or BC) in order to keep the overall search algorithm that
maintains consistency as simple as possible. This enables us to shed a more
theoretical light to the integration of consistency into search and study the overall
consistency complexities, not isolated but always in the context of search methods
that maintain them. Our computations are backed by wide experimental data.

Instead of swapping HLCs and AC, we choose AC and BC, as bounds con-
sistency is naturally used to describe constraints in Constraint Programming
solvers [53].

3.3.5 Constraint propagation, validation, and explanation

It is almost never mentioned as it may seem trivial that constraint propagation
also serves the role of constraint validation. For example, when a search method
makes an assignment, constraint propagation attempts to prune as many nogood
values as possible out of the domains of the constrained variables. If a domain is
wiped out, then the assignment is considered invalid, and we have to proceed to
a different assignment.

But, before moving forward to a new assignment, one my ask the solver to
explain “why this assignment was proven invalid in the first place?” The answer
to this question is useful both to a human and to a search algorithm. The user is
informed which constraint fails, and if it fails frequently, the user may remove the
constraint or make it less hard. On the other hand, a search method can record
the explanation why a specific combination of assignments (e.g. X « a, Y « b,
Z « ¢) causes a domain wipeout (due to specific constraints that connect them).
This can be a lesson learned for the search method, so as to avoid the same
assignment in the future [29].

Besides, the trend now in Artificial Intelligence is to make it explainable: the so-
called “XAl.” These days, intelligent algorithms play a key role into our lives. They
should not be black boxes and we need justifications behind their decisions. In this
context, the Inverse Constraint Programming has been recently introduced [50].
This framework does not just inform the user why a CSP cannot be solved, but it
also suggests the needed changes in the user’s requirements in order to get a
solution.

Furthermore, significant effort has been recently put into making the explana-
tions as much user-friendly as possible. As constraint propagation is frequently a
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big chain of steps and domain modifications, Bogaerts et al. defined the problem
of finding the minimal sequence of steps that led to a failure [13]. This is actually
an optimization problem by itself, to present to the user the smallest needed
information about the decisions taken.
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4. BRIDGING THE GAP: FROM RANDOM TO
DETERMINISTIC HEURISTICS

This is the essence of intuitive heuristics: when faced with a difficult
qguestion, we often answer an easier one instead, usually without
noticing the substitution.

Daniel Kahneman, Thinking, Fast and Slow

4.1 New probabilistic heuristics

Our contribution lies in the mathematical foundation of a framework that covers
both deterministic and random heuristics in constructive search. In contrast
to existing methodologies, we leverage on the smooth transition from the total
randomness to determinism [71}, [72].

4.1.1 Heuristic estimation as a real number

A heuristic function maps every possible choice in the search tree to a number
that corresponds to the estimation that it will eventually guide us toward a solution.

Definition 5. For a specific search tree node, let Choices be the set with the
alternative assignments that one may follow. The heuristic function h. maps each
alternative assignment i € Choices to a positive number, i.e. h : Choices —» R*.

Example 8. In Fig.[2.7|Juppermost right node, there are two alternative assignments
in Choices = {X, « 1, X, «< 3}. One heuristic function may provide the estimations,
e.g. hx2<—1 = 0.7 and hX2<_3 = 2.8; that is, the assignment X, « 3 is more promising.

The above example is almost ideal, as the heuristic function h favors the
assignment X, « 3 over X, « 1. Besides, the latter leads to a dead end, as its
two descendants are struck-out in Fig. [2.7], because they violate the constraints.

Unfortunately, this is not always the case, i.e. the heuristic value for an assign-
ment that leads to a dead end (say X, « 1 in Fig. may be overestimated or,
even worse, may be greater than the heuristic estimation for an assignment that
really leads to a solution (e.g. X, « 3).

A heuristic value h; is actually a prediction whether a specific assignment will
ultimately guide us to a solution or not. Being a prediction, it implies an inherent
reliability/confidence level.

In the above definition, we excluded negative values as the heuristic function’s
output. A negative heuristic evaluation could probably mean “do not make this
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Figure 4.1: Heuristic estimations h; for each value v;

choice at all.” But heuristics are normally used to favor one choice over another
and not to prune a choice. In any case, if we had a function h with minh < 0, we
could transform it into h” = h + | min h| to make it comply with the above definition.

4.1.2 Heuristics probabilistic foundations

Probabilities are a more precise way to depict heuristics than orderings, be-
cause heuristics are actually estimations whether a choice will guide us to a
solution; they are not a strict quality rank.

Definition 6. A function P : Choices — [0,1], namely a heuristic distribution
function, maps each available choice to a corresponding probability, i.e. P(i).

As in Definition [5| and the Example [8]that follows it, Choices may include all
the possible/candidate assignments to a constrained variable.

Property 1. It should hold that 3. P(i) = 1, as P denotes a probability for each
i € Choices.

Regarding random search methods (Section|3.1.4)), the probability is distributed
uniformly along the Choices. Conclusively,

Property 2. The heuristic distribution for a random method is always P(i) = |Cho1ices| ,
Yi.

Example 9. Say that Choices = {v,,v,,...,v.}. Every v, denotes a possible assign-
ment. Furthermore, in a specific search tree node we can make five different
assignments, and their corresponding heuristic estimations h; are 1, 5, 2, 4, 3
respectively, as in Fig.[4.1]

Figure[4.2/depicts the corresponding heuristic distribution function for a random
method, that is P(i) = % Yi.

On the other extreme, deterministic search methods (Section |3.1.3) always
select the choice v; that corresponds to the h; with the highest rank.

Property 3. Formally, in deterministic search methods, if i = arg max; hj, then
P(i) = 1, otherwise P(i) = 0.

Example 10. The greatest heuristic value in Example @ is h, = 5. Hence, a
deterministic search method would select v, with a certain probability P(2) = 1.
Consequently, the rest of the probabilities are zero, as in Fig.

N. Pothitos 72



Constraint Programming: Algorithms and Systems

0.8
= 06
Q o4
0.2
o [ | B
v, v, A v, Ve

Figure 4.2: The probability is spread uniformly

0.8

0.2

Vs

Figure 4.3: Systematic search favors the highest h,

Figure 4.4: As conf rises, the effect to P(i) is greater
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Without loss of generality, we assume that heuristic values are non-zero.
Furthermore, if there are more than one heuristic value equal to the maximum
heuristic value, deterministic methods arbitrarily consider only one of them as
maximum. To simplify the following equations, we will assume that there is only
one maximum. For formulas and proofs that are straightforwardly compatible with
two or more equal maximum heuristic values, see Section |4.1.4]

4.1.3 Bridging the two opposites

We extend our previous formulation of the heuristic distribution function (Defi-
nition [6) in order to compromise random and deterministic methods. We introduce
a parameter conf € R*, that signifies how much the heuristic estimations will be
taken into account; it is the heuristic’s confidence. This confidence parameter is
the basis to define the condition when a heuristic distribution function is “balanced.”

Definition 7. A parameterized heuristic distribution function P__ (i) is balanced if
and only if:
1. Vi, lim (I)Dconf() !

conf— [Choices|’

2a. if i = argmax. h] COLlrEchonf( =1,

2b. otherwise, COLifrEmPconf(l) =0

Moreover, the function P_, (i) must be monotonic and continuous with respect to
conf and for fixed i.

Intuitively, conf is the link between random and deterministic search methods,
as the above definition covers both Property[2lwhen conf — 0 and Property[3/when
conf — oo. In other words, conf is the position along the random-deterministic
axis.

What happens for intermediate conf values? This depends on the precise
parameterized heuristic distribution function instance. We define the following
function that gradually scales randomness.

con
/)

hconf
Lemma 1. The function P, (i) = S pr is balanced '

Proof. We prove Definition [7] three requirements.

0
N hf _ 1 _ ]
L con, Beonrl1) = s h° 3 1 IChoices| "
jeChoices 4 jeChoices

2a. Let n = |Choices|. This number is bounded as the possible assignments in
a CSP are a finite set. Thus, the distribution function can be analyzed as

conf conf
. i h;
Pconf(') - conf _ , conf conf | f £
N con con
Zjhl h h +hmax +e +hn
YFor conf = 1, the function P, (i) = 2 is equivalent to the fitness proportionate selection

3 h;
function—resembling a roulette Whee/—that is used in Genetic Algorithms [84].
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Let h_.. be the maximum h.. If we divide by hfnoe{‘Xf both the nominator and
denominator, we have

Pconf(i) =

= h ot 4.1)
T i (7r)
Here, max is an abbreviation for arg max; h;. Therefore, Vj # max,
h;
hj <h .= <1 =
max
h. conf
im [——] =o0. (4.2)
conf—-oo hmax
As a result from (4.1) and (4.2),
) h; conf
| . A
co”gtlojjconf(') - _ h; \conf
1+ Zj:max iMoo o0 (hmax)
h. conf
= lim (—') . (4.3)
conf- oo hmax

A direct derivation of the above is that for i = max = arg max; hj, we have

lim - 0 Peons(Max) = 1, which is the second prerequisite for a balanced
function.

conf

2b. Finally, the last prerequisite of Definition involves i # max = h;<h__ =
— < 1, which, combined with (4.3), gives lim__ ., . P.,.¢(i) = 0, which had
to be demonstrated.

]

The above function in Lemma([1]is balanced, and it also moves smoothly from
the random extreme to the deterministic one, because it is a continuous function,
with regard to conf € R".

Hence, the overall function is a transition from the total randomness to the
almost total determinism. This is illustrated in the three-dimensional Fig.[4.4] which
for conf = 0, is equivalent to the two-dimensional Fig.[4.2| and when conf — oo, it

is equivalent to Fig.[4.3
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4.1.4 Balanced heuristic distribution for two or more maximum heuristic
values

This section is a restatement of the definition and proof of the previous section,
for the case that there are m equal maximum heuristic values with m > 1.

Definition 8. We denote the set containing the indexes of the heuristic values
with maximum values as M ={i | h,=h__ }, where h___is the maximum heuristic
value. Also, by definition, |M| =

max

Definition 9. A parameterized heuristic distribution function P__ (i) is balanced if
and only if:

. . 1
1. Vi, lim P )= ———,
conf—0 cont() |Choices|
s 1
2a. if M, |im P —
a. ifieM, lm confll) = ot

2b. otherwise, I|m P.,e(i) =0.

conf- oo

Moreover, the function P__ (i) must be monotonic and continuous with respect to
conf and for fixed i.

conf
i .
Lemma 2. The function P_, (i) = W is balanced.
Proof. We prove the three requirements of Definition [9]
hy 1 1
1. lim P ' = = , :
conf—0 cont(1) = s h > 1 |Choices]|
jeChoices I jeChoices

2a. Let n = |Choices|. This number is bounded as the possible assignments in
a CSP are a finite set. Thus, the distribution function can be analyzed as

conf conf
h| h

P

CONf(I - conf ~ conf conf °
2; hj Yiemhi * Ziemhj

Let h_ be the maximum h.. If we divide by h®"f both the nominator and

max
( h. )conf
!
hmax

denominator, we have
h; conf h; conf *
Senliz)  * Tjem ()

max max

Peont(i) = (4.4)

From the Definition it holds that for each j € M, hj = h_... Therefore

h. \conf h conf
2 e I e AR @s)

jem \""max jem ' "max jeM
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Furthermore, for each j ¢ M,

h;
hj <h .. = P <1 =
max
h. conf
lim —’) =0. (4.6)
conf—>oo(hmax
As a result from (4.4)), (4.5), and (4.6),
) h; conf
i . IImconf—>oo (m)
conlfrEoopconf(’) - m+0
1 h. conf
= — lim (—’ ) . (4.7)
m conf-oo hmax

A direct derivation of this is that for i € M, we have

h conf
im P ()=~ lim (%) =

conf—co m conf-co m

max

which is the second prerequisite for a balanced function.

2b. Finally, the last prerequisite of Definition @ involves i ¢ M = h. <h__ . =
h:;x < 1, which, combined with (4.7), gives lim_ . P . (i) = 0, which had
to be demonstrated.

]

Furthermore, our initial goal was to propose flexible heuristics which perform
better than purely deterministic or purely stochastic ones. To implement and
measure the transition from randomness to determinism, we just introduced a
confidence value. However, new questions now arise. Which conf value should
be used? Which is the best way to bind the proposed hybrid heuristics to search
processes?

4.2 Piece of Pie Search

Heuristics are not completely autonomous on themselves. Their usage is
meaningful only in the context of search methods. Search methods consult/call
heuristic functions and not the opposite. In order to fully exploit the introduced
heuristics framework, we built the new constructive search method Piece of Pie
Search (PoPS).

4.2.1 The algorithm’s core

Figure [4.5 describes PorsSawmpLE, which is the POPS core. It is called inside
PoPS in order to solve a CSP by providing a complete and valid Assignments
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set, which is initially empty. For the sake of simplicity, we consider that the value
conf = 100 represents infinity or, more formally, the maximum conf value. In fact,
before “hard-coding” this value we should consider the heuristic function itself
which, in turn, depends on the CSP that is used for and then probably change this
“100” value.

In each PorsSamPLE call we get an unassigned variable returned by the function
VARIABLESORDERHEURISTIC(.Z") where 2 is the set of all the constrained variables.
For example, if this function implements the fail-first heuristic, it will return the
variable X having the minimum |D, | with [D,| > 1.

The next step is to store its D, domain in order to restore it in a future backtrack.
All the above steps are common in constructive search methods.

The crucial and novel part of this function is inside the while iteration where
we go through the different values in D,. The VALUESORDERHEURISTIC(D,, conf) calll
returns a value out of D, using the heuristic function in Lemma .

Normal search methods, like Depth First Search (DFS), Limited Discrepancy
Search (LDS), and other known deterministic methods explore in their steps
a specific number of values in D, or every value in it (cf. Section . In
PopsSamPLE, we explore a specific subset D, of D,, which corresponds to a
proportion of the heuristics pie. The proportion is the argument PieceToCover €
[0,1]. When PieceToCover is 1, PorsSAMPLE becomes a complete search method
as it explores all the D, set values.

Example 11. Figure[4.6|/demonstrates the heuristics-probabilities pie for the Exam-
ple @: Each P(i) corresponds to a value v; in D,. In this case, a PopsSaMPLE(0.5, 1)
invocation would explore at least half the pie. E.g., the choices that correspond to
the heuristics P(1) + P(2) + P(3) or P(2) + P(5) make half the pie and more.

A more detailed step by step explanation follows.

* We are inside the while loop of a PopsSampLE(0.5, 1) call.
» CoveredPiece is initially 0; the loop stops when CoveredPiece exceeds 0.5.
* VALUESORDERHEURISTIC(D,, 1) is called.

« According to Example [9] the above function call will return a value out of
{vi, vy, V5, v, Vs

* Each value v; has been evaluated with a heuristic value h,-.

* The h; function may implement for example the so-called least constraining
value (LCV) heuristic. Any heuristic function h; can be used.

» Let us use the indicative values h1 =1, h2 =5, h3 =2, h4 = 4, and h5 = 3.

* The probability that v, is selected by VALUESORDERHEURISTIC is P(i), which is
calculated using the above evaluations together with Lemma [1]

« Thus, the respective probabilities are P(1) = 0.07, P(2) = 0.33, P(3) = 0.13,
P(4) = 0.27, and P(5) = 0.20.

 Again, all the above are probabilities (P(i)) of the event that a specific value
(v;) will be selected. Therefore, every value can be selected in each iteration.
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function PorsSampLE(PieceToCover, conf)

arguments:
PieceToCover: The proportion of the heuristics’ pie to be explored
conf: A “confidence” value between 0 and 100

local variables:
Assignments: set with all the assignments made until this call
Z. set with all the constrained variables (bound and unbound)
X: constrained variable that is going to be instantiated
value: value that is going to be assigned
h, - heuristic value for the assignment X « v
DXM: initial domain of X, before any assignment was made
D,: current domain of X
CoveredPiece: current covered proportion of the pie

if Assignments violate any constraint then
return failure

else if Assignments include every variable then
Record Assignments as solution
return success

end if

X < VARIABLESORDERHEURISTIC(.Z")

DXinit < DX_

CoveredPiece « 0

while CoveredPiece < PieceToCover do
value « VaLUesOrbERHEURISTIC(D,, conf)

conf

. . h s
CoveredPiece « CoveredPiece + —X=¥alue__

conf
ZveDX .hX*V
init

Assign value to X and add it to Assignments

if PopsSAMPLE(PieceToCover, conf+199-conf) thep

|.27]-1
return success
end if
Undo the assignment
D, < D, -{value}
end while
D, < D, > Restores initial domain

init

I
return failure > All alternative values are exhausted
end function

Figure 4.5: The recursive PopsSampLE called by PoPS
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P(2)

P(4)
Figure 4.6: The heuristics-probabilities pie chart for Example @

* Suppose that v, is selected at the first iteration with P(5) = 0.20.

 This probability is also used to increase the current CoveredPiece, which
becomes 0.20 too.

* Xis assigned v;.

After the assignment, PopsSAmPLE(0.5, 1 + |=%99|—1) is called. Please note the

increase of the conf value. This recursive call will choose another variable out
of 2" and enter the while loop again. This loop will try to assign a value to the
new variable from its domain. If all the attempts inside the iteration of the new
recursive call fail, we continue back to the first while loop, which was described in
the above bullets.

* The assignment of v, to X is undone, v, is removed from the domain, and
another iteration begins.

» We proceed to the second iteration, as the PieceToCover (0.5) is still greater
or equal than the CoveredPiece (0.2).

* Letus say that v, is then chosen by VALUESORDERHEURISTIC with a P(2) = 0.33
probability.

» CoveredPiece now equals 0.20 + 0.33 = 0.53.

Then, PopsSampLE(0.5, 1 + I;?—1) is called. Again, if all the attempts in the iteration

of the new call to instantiate the next variable fail, we step back to the first while
loop:

* The assignment of v, to X is undone.

» We proceed to the third iteration.

» Nevertheless, CoveredPiece (0.53) is now greater than PieceToCover (0.5).

» More than half of the pie of the choices for X has been already explored; no
other alternatives are examined.
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P(2)

o - "

P(5)
P(4)

Figure 4.7: The previous heuristics-probabilities pie chart when conf = 2

* The rest of the values v,, v;, v, are left unused/unexplored. This makes
PopsSAMPLE an incomplete search method, as it may override a solution
(which involves for example these values) for the sake of speed.

LDS is a search method which, in each search tree node, explores only a
limited number of the available choices. The difference with our method is that
we may explore a limited proportion of the heuristics pie of choices, which makes
our method more “heuristics-aware.” This means that the number of the explored
choices by our method in a specific node may vary, depending on how the heuristics
pie is distributed to the choices. On the other hand, LDS explores a fixed number
of choices, independently of the heuristics pie distribution.

It is worth noting that while more variables get instantiated, the conf value
gradually increases. Besides, heuristic estimations tend to be more reliable when
we have less unassigned variables.

Example 12. We will consider the above Example [11]for a PorsSampLE(0.5, 2) call,
i.e. for conf = 2.
According to Lemmal(l] the probabilities for conf = 2 are computed as P(i) =
: 2 2
% For example, P(1) = ;;]2 = 12+52+;2+42+32
P(2) = 0.45, P(3) = 0.07, P(4) = 0.29, and P(5) = 0.16. Thus, the pie is redistributed
as in Figure[4.7]

While the conf value increases, the value v, which had initially the greatest
heuristic evaluation h, is even more likely to be selected, as P(2) increases too. In
other words, we get closer to total determinism and closer to complete confidence
in the highest heuristic evaluation: In total determinism (in systematic search) v,
would have been always selected with a certain probability 1.

2

= 0.02. The other probabilities are

4.2.2 Heuristic confidence vs. node level

An important detail in PopsSAmPLE appearing in Fig.[4.5} is the increase in conf
as the current search tree node level deepens.

When we make the first recursive PopsSampLE call (inside while), we have
already made an assignment. Hence, the current tree level will be augmented by
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1 and conf will be increased by %

Each subsequent recursive call deepens search by one level, until the current
depth reaches | 27|, which means that every variable in 2™ has been assigned a
value. For a specific depth k the conf value is increased by (k - 1)1?%?1”. Finally,
when k = |.27|, the conf argument of PopsSampLE will become equal to the value
100.

The following is not guaranteed, but in the deepest node levels, heuristics are
usually more accurate, because more variables have been instantiated, and we
have a clearer picture of the problem. In our framework, more accuracy means
more confidence, that is why we increase conf as the search method proceeds

with the assignments.

4.2.3 POPSSAMPLE average complexity

The PopsSampLE complexity depends on PieceToCover argument and the
heuristic function distribution.

Lemma 3. Let n be the constrained variables number and let d be the average
domain size. Then, the average complexity of a PorsSampLE(PieceToCover, conf)
call is O(d" - PieceToCover").

Proof. An initial PorsSAampLE(PieceToCover, conf) call iterates through the values
of, let us say, the first variable X, . If the heuristic function numbers for the values

in DX1 are uniformly distributed, the expected value for hx1(_value would be p =

ZveDX1 hX<—v
1Dy, |
Thus, to reach the pie proportion A = PieceToCover - 2 ep
X
A/u = PieceToCover - |DX1| iterations, i.e. O(PieceToCover - d) loops.

The total time needed is T, = O(PieceToCover - d) - T,, where T, is the time for
the PopsSampLE call inside the loop. It also holds that T, = O(PieceToCover-d)-T;,
etc., and finally T, = O(PieceToCover - d). In conclusion, the aggregate complexity
is O(PieceToCover” - d") for the initial call. O

hy._,» we need

We can observe that PopsSAMPLE(1, conf) is equivalent to a complete search
space exploration, which has an O(d") time complexity.

4.2.4 The motivation behind POPS

Finding the best conf is the motivation behind PoPS. Unfortunately, we do not
know a priori which conf is the best parameter for PorsSampLE. However, we can
find it by trial and error. In Fig. [4.8] the PoPS function invokes PopsSAmpLE for
SamplesNum different conf; values, including the values 0 and 100.

Each different conf; is used in turn. Initially, the Cover; parameter in the POPS
algorithm is zero for every conf;. When a specific conf; has been examined,
the corresponding Cover,; is increased by %, where d is the average domain size.
When the second iteration over a specific conf; ends, the Cover; is increased

again by 1 and so on.
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function PoPS
local variables:
SamplesNum: how many different conf values are initially employed
conf.: array with all the initially employed conf values
Sample,.: a Boolean array; if its i element is deactivated (false) the
corresponding conf; value is currently ignored
Cover;: corresponding “piece to cover” argument for PorsSAmPLE call
d: average domain size of the constrained variables

for i from 1 to SamplesNum do
Sample,. is activated

Cover; « 0
i-1
Confi < 100 SamplesNum-1
end for

while the available time is not exhausted do
for each active Sample, do
if PopsSampLE(Cover;, conf;) did not return a solution then
Sample,. is deactivated
end if
Cover; « Cover; +
end for
if every Samplei Is deactivated then
Activate every Sample. > to keep searching.
end if
end while
end function

1
d

Figure 4.8: Piece of Pie Search (PoPS) Method
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In this way, each conf; is given the same opportunity (search space) to find
a solution. If some conf; does not produce a solution, it is deactivated. It is
reactivated only if all other conf.’s fail to produce a solution.

4.3 Empirical evaluations

The gradual switch from randomness to determinism can boost search in
demanding CSPs, such as course scheduling and the radio frequency assignment
problems. With the help of our free constraint programming C++ library NAxos
SoLVER [67], we solved official instances of these problems for different heuristic
distribution configurations.

The source code for our evaluations is freely available, including the problem
datasetsﬂ The experiments were conducted on an HP computer with an Intel dual-
core E6750 processor clocked at 2.66 GHz with 2 GB of memory and a Xubuntu
Linux 12.04 operating system.

In the following three subsections (4.3.1}, 4.3.2}, |4.3.3) the experiments are
repeated for different conf values, as we do not use PoPS. On the other hand,
in the last subsection [4.3.4, PoPS automatically chooses by itself the employed
conf values.

4.3.1 University course scheduling

Automated timetabling is nowadays a crucial application, as many educational
institutions still use ad hoc manual processes to schedule their courses. The
International Timetabling Competition (ITC) is an attempt to unify all these pro-
cesses. We borrowed the fourteen instances of the contest track concerning
universities [58].

In these problems, we have to assign valid teaching periods and rooms to
the curriculum lectures. The objective is to distribute them evenly during the
week but without having gaps between them, if scheduled on the same day; each
gap increases the solution cost [74]. As variable ordering heuristic, we used
minimum remaining values and degree for tie breaking, and we randomized it
using the function in Lemma (1] Least constraining value was used as value
ordering heuristic.

Due to the ITC specifications, we had 333 seconds in our machine to solve
each instance and minimize the solution cost as much as we could. Figures[4.9
and [4.10| display the minimum solution costs found per instance for various conf
values. We observe that as conf increases the costs tend to a specific number,
whilst for small conf values we have fluctuations because search becomes more
random.

It was expected that for high conf values the results would be more stable,
as the search process approximates the default depth-first-search (DFS). For
the marginal low values, e.g. conf = 0, search is completely stochastic and the
results are worse on average, as we have higher solution costs. Nevertheless,
the evaluations for intermediate conf values, e.g. conf = 20, are more promising.

Zhttp://di.uoa.gr/~pothitos/PoPS
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Remember that an intermediate conf value favors the selection which corresponds
to the best heuristic evaluation, but it also gives room to other selections (the
“outsiders”) as their probabilities are not zero.

The automatic selection of the best conf is an open question here; in Sec-
tion[4.3.4), PoPS finds automatically the best conf values.

In practice, as shown in Fig.[4.9/and [4.10] a conf value around 100 actually
represents infinity, because search tends to produce the same solutions for conf >
100.

It is worth to mention that in Fig. [4.10|the only solution found for the Let0405-1
instance, depicted with an asterisk %, was for an intermediate conf = 10.

4.3.2 Radio link frequency assignment

Another important real problem is the frequency assignment, in which we have
to assign a frequency to each radio transmitter with the objective to minimize the
interference. The interference is minimized by assigning different frequencies to
every two transmitters that are close to each other.

The Centre Electronique de 'Armement (CELAR) provides a set of real datasets
for this NP-hard problem [19]. We chose to solve the five so-called “MAX” prob-
lem instances, namely SCEN06—-SCEN10, in which, generally speaking, we try
to maximize the number of the satisfied soft constraints. Similarly to the above
course scheduling experiments, as variable ordering heuristic we used minimum
remaining values and degree for tie breaking, and we randomized it using the
function in Lemma [I] No special value ordering heuristic was employed: the
lexicographical order of the values was kept while iterating through them.

For each of these instances, we had 15 minutes to explore the search space.
We recorded the best (lowest) solution costs found so far in Fig. [4.11] for several
conf values. Approximately the same as in course scheduling, the lowest solu-
tion costs occur around conf = 10, which gives better results on average than
the marginal conf values. This means that we achieve best results when the
confidence to our heuristic is neither too high nor very low.

4.3.3 PoPSSAMPLE during hard optimization

The conf parameter can refine any search method that adopts our heuristic
framework. The PopsSampLE method goes a step further: it incorporates our
heuristic confidence semantics into its search engine.

In order to solve the first university course timetabling instance (Fis0506-1 of
Section[4.3.1), we invoked PorsSawmPLE for various PieceToCover and conf values
and we plotted the best solution costs found in Figure[4.12] The third dimension is
the cost of the solutions found: the lower the solution cost is, the more qualitative
timetable is produced.

In the same graphs, we include some of the well-known search methods
results, such as DFS, LDS, and Iterative Broadening, implemented in the same
solver, with only their best solution cost depicted as a plane grid, in order to make
comparisons easily.
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Figure 4.12: PopsSampLE for the first ITC instance

4.3.4 POPS vs. other search methods

In the above section, it was not easy to figure out the best PieceToCover and
conf combination. In order to find it, we have to search by hand the lowest point
in the three-dimensional PieceToCover vs. conf vs. Cost graph.

Now we employ PoPS to automatically seek for the best PieceToCover and
conf combination while solving the fourteen course timetabling instances. For
each instance, we have now just one solution as in Table 4.1

As described in Section [4.2.4, PoPS uses several conf values and favors the
most fruitful ones. We used five conf samples, i.e. 0, 25, 50, 75, and 100, by
setting SamplesNum equal to 5. In this way, POPS constructed solutions with
lower costs than the other methods, except for the fifth instance, as illustrated in
Table[4.1]

In this section, we used least constraining value as VALUESORDERHEURISTIC,
and we randomized it using the function in Lemma(l] The time limit for all the
methods was set to 15 minutes.

4.4 Conclusions

In this chapter, a new hybrid heuristic was defined. It has a confidence pa-
rameter to smoothly traverse from total determinism to total randomness. This
heuristic can be adopted by any search method.

Additionally, this chapter introduced a new PopsSAmMPLE search method. This
method efficiently exploits the proposed hybrid heuristic, as it increases the confi-
dence parameter while descending to the leaves of a search tree.
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Table 4.1: Solution costs for fourteen ITC instances

Instance PoPS LDS DFS It. Broad.
Fis0506-1 105 171 345 286
Ing0203-2 241 288 698 321
Ing0304-1 279 307 578 353
Ing0405-3 195 215 817 235
Let0405-1 655 627 X X
Ing0506-1 307 311 812 342
Ing0607-2 282 283 1184 328
Ing0607-3 223 239 635 262
Ing0304-3 288 294 675 370
Ing0405-2 265 284 877 344
Fis0506-2 12 33 486 34
Let0506-2 713 783 1621 937
Ing0506-3 231 256 660 280
Ing0708-1 223 227 660 264

Finally, a new parameter-free POPS search method is repeatedly calling
PopsSampPLE with various values of its parameters and favors the values that
produce the best results.

The efficiency of all the above has been illustrated in difficult real-world opti-
mization CSPs.
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5. CONSTRAINT PROGRAMMING MAPREDUCE’D

The world is one big data problem. There’s a bit of arrogance in that,
and a bit of truth as well.

Andrew McAfee, MIT

Search trees in Constraint Programming are a fertile ground for parallelization.
However, it is difficult to propose a global parallelization schema, due to the great
Constraint Satisfaction Problems (CSPs) variety and the plethora of the sequential
search methods that are available to solve a CSP. In this chapter, we exploit
a sequential search methods framework to make an arbitrary search method
parallel by simulating its sequential execution. We record the visited search tree
parts and then try to restore them on different Mappers-workers in a MapReduce
installation [70].

5.1 Optimal search tree partitioning

Parallel search can benefit from splitting the search tree into equal parts. The
most secure way to fairly split a search tree would be to traverse all of its nodes
sequentially and record the elapsed real time when each node was visited. Then,
we would divide the total time with the available workers number. Each time slice
would be identified by two nodes: a start and an end node.

Take for example the tree in Fig.[5.1] Table [5.1] contains indicative times when
the visit to each node was completed. It could be the real time in microseconds
elapsed from the beginning of search. The visit to each node n; (first row of the
table) takes some time d. (third row of the table). If we set 0 as the wall clock time
when the visit to n, started, we start visiting node n; when the wall clock time is

Figure 5.1: A search tree example
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Table 5.1: The time when each node is visited sequentially

Node n,|n,\nyin, | ngncin,|ngingin,,
Time visited| 2 | 4 | 5 [{10]|13|18(21|22|25| 27
Duration 2121|513 |5[3|1|3] 2

AN Solutions in

n...n >
1Mo SOLVER —— nodes n,.n,,

process time=27

Figure 5.2: A sequential traversal finds all the solutions

equal to ZL‘; d,. The wall clock time needed to explore the whole search tree is

2,181 d,. These aggregate times are illustrated in the second row of the table.

If we have 3 available workers to explore the above nodes, it would be better
to divide the set of nodes into three almost equivalent parts. The desired duration
for each part would be 27/3 = 9 seconds. Hence, the ranges n,..n, and n...n,
and n,..n,, are almost equivalent, as they have the respective durations of 10, 8,
and 9 seconds.

The aforementioned three parts of the search tree do not have any topological
meaning; for example, they do not form three subtrees. The meaning of our
partition is plainly chronological. For the first time, the search tree is not partitioned
with a top-down approach; we focus directly on the factor of time.

N

Solutions
SOLVER — i, n..n,

process time=10

AN
N Solutions Solutions
Ns..Ng SOLVER ——— . -
. inng..n, inn,.n,,
process time=8
AN
AN Solutions

SOLVER — inn..n
process time=9 710

Figure 5.3: A parallel traversal of the tree by three Solvers

A sequential search method takes 27 time periods to traverse the whole search

tree n,..n,,, as in Fig. . If we had three workers to traverse the above three
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splits (n,..n,, n...n,, n,..n,,) in parallel, in three different processors or cores, it
would take only 10 periods, as in Fig.[5.3]

Note that the ranges n,,..n,4 that are the input for the Solvers are simply the
IDs for two tree nodes and nothing more. In practice, the n_,_...n_ ,is alinein a
text file, read by the Solver. But how can we encode a node into a text file?

5.2 Encoding a search tree node into an array of integers

The mechanism that searches for a solution in a Constraint Programming
solver is a complex one as it has to support ad hoc customized search methods,
as Naxos SoLveRr does [72]. For the sake of simplicity, we will focus on a single
generic search method and not the whole search methods placeholder.

The following DFsVARORDHEUR recursive function is the backtracking search
method Depth First Search, originally introduced in Fig.[2.4]as DFS. The difference
is that DFsVARORDHEUR is more generic in the sense that it employs a dynamic
variables ordering heuristic in contrast to DFS which has a static variables ordering.
Furthermore, it aims to output every solution.

function DFsVARORDHEUR(?)
> The method reached the search tree level ¢
X < VARIABLESORDERHEURISTIC(.Z")
DXinit < DX
foreach v € DXinit do
D, « {v} D AssignvtoX
if no constraint is violated then
> Proceed to the next variable/level:
if £ = n then
Print solution
else
DrFsVARORDHEUR(? + 1)
end if
end if
end for
DX < DXinit
return failure
end function

DFsVARORDHEUR aims, when called as DFsVARORDHEUR(E) and £ - 1 variables have
already been evaluated, to assign a value to the £-th variable (chosen by the
heuristic) and then call itself to evaluate the rest variables. To solve a CSP, we
initially call DFsVARORDHEUR(1). We are going to modify the above search method
and give it the possibility to

« identify the node that is currently exploring and store it as a Sibling integer
array,

* start exploring the search tree directly from a node described using a
SiblingStart array, and
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* terminate search when it visits a node identified as a SiblingEnd array.

The following DFsPART function integrates all the above features by adding the
lines to the original DFsVARORDHEUR function.

1: function DFsPART(¥, Sibling, SiblingStart, SiblingEnd)
2 X « VARIABLESORDERHEURISTIC(.Z")
3 D, « D,
init
4: Sibling[f] « 0
5: foreachv e DXinit do
6 Sibling[?] « Sibling[£] + 1
7 if £ < |SiblingStart| then
8 if Sibling[f] < SiblingStart[f] then
9: continue
10: else if Sibling[?] = SiblingStart[f] then
> We found the starting sibling number!
> Nullify SiblingStart for current level:

11: SiblingStart[f] « 0
12: end if
13: end if
14: if Sibling = SiblingEnd then
D> All the items of the two arrays are equal
15: terminate execution
16: end if
17: D, « {v}
18: if no constraint is violated then
19: if £ = n then
20: Print solution
21: else
22: DrsPArRT(? + 1, Sibling, SiblingStart, SiblingEnd)
23: end if
24: end if

25: end for
26: D, «< D

X Xin_it
27: return failure
28: end function

Figure is an example of a search tree parsed by DFsVARORDHEUR. On top
of each node n; which is on level £ there is a number denoting Sibling[?]: the serial
number of the sibling that is implemented in DFsPART.

The path toward each n; is unique and can be represented by the Sibling array
in a unique way. For example, n, is represented by [1], n, is represented by [1, 1],
n, by [1,1,1], n, by [1,1,2], n; by [1, 2], and so forth.

DrsPART is capable to partially explore the tree by restoring an n_, . node and
continuing the tree traversal until it meets a given n__, node. The two bound-
ary nodes ng . and n_., are represented by the SiblingStart and SiblingEnd
arguments of DFSPART.

Let us see the search tree and the DFsVARORDHEUR and DFsPART functions
from the CSP solutions perspective. Let us suppose that the solutions of the CSP
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Figure 5.4: Tagging the nodes of a search tree

are depicted in the leaves-nodes n,, n,, ng, ny, and n,,. This means that

» a DFsVARORDHEUR(1) call should produce an output containing all these
nodes encoded as
[1,1,1]
[1,1,2]
[1,2,3]
[1,2,4]
[2,3,1]

* DrsParT(1, Sibling, n,, n,) will output only the solutions between n, and n.,
le.
[1,1,1]
[1,1,2]

* DrsParT(1, Sibling, n,, n,,) will output only the solutions between n, and
Ny, i.e.
[1,2,3]
[1,2,4]

* DrsParT(1, Sibling, n,,, n,.) will output only the solution between n., and
N, i.e.
[2,3,1]

Therefore, in terms of solutions, DFsVARORDHEUR(1) is equivalent to the above
three independent and complementary DrFsPART calls.
In other words, DFsVARORDHEUR(1) iterates sequentially from the node n, to
node n,..
15

* DrsParT(1, Sibling, n,, n,) is equivalent to the DFsVARORDHEUR(1) execution
as it iterates from n, (included) to n, (not included).

« DrsParT(1, Sibling, n,, n,,) is equivalent to DFsVARORDHEUR(1) execution
as it iterates from n, to n,,.

* And DrsParT(1, Sibling, n,,, n.c) is equivalent to DFsVARORDHEUR(1) exe-
cution as it iterates from n., to n..
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Finally, it is worth mentioning that the goal of partitioning the search tree is not to
provide splits that contain equal number of solutions, but to create parts that can
be explored in almost equal lengths of time.

Example 13. Let us suppose that we wish to explore in Fig. [5.4] only the nodes
between n, (included) and n,, (not included). One should call DFsPArT(1, Sibling,
[1,2,2], [2,2]). The last two arrays (SiblingStart and SiblingEnd arguments)
represent n, and n,, respectively.

* In the first for iteration inside DFsPART, we have Sibling[1] = 1. Thus, the
condition statement Sibling[f] = SiblingStart[£] in line [10| is satisfied.

« Subsequently, SiblingStart[1] is set to zero in line[11] We have reached the
correct Sibling, and therefore we will ignore SiblingStart[f] for £ = 1 from
now on.

» Execution continues, a value v is assigned to the constrainted variable,
and DrsPART(2, Sibling, SiblingStart, SiblingEnd) is called. Now we have
Sibling[2] = 1.

- As SiblingStart[2] = 2, the condition in line |8]is satisfied, and DFSPART
directly continues to the second iteration of the loop, to reach the next
sibling.

- Now, Sibling[2] = 2 which is equal to SiblingStart[2]. The equality
condition in line[10]is met again, and SiblingStart[2] will be “nullified.”

- We have reached n; in Fig. . A value v is assigned to the corre-
sponding constrainted variable. We are close to the starting node

n,.

- DrsPaRT(3, Sibling, SiblingStart, SiblingEnd) is called.
» Sibling[3] = 1 and SiblingStart[3] = 2. The condition in line [g]is

satisfied. We continue to the second iteration of the loop, to reach
the next sibling.

x Sibling[3] is now 2 which is equal to SiblingStart[3]. The equality
condition in line [10is met.

* We have eventually reached the starting node n, in Fig. 5.4 which
is described by the SiblingStart array!

* DFsPART proceeds with normal execution, without taking into consideration
SiblingStart anymore.

* The search tree is regularly explored until we visit the ending node n,, which
is described by SiblingEnd.

The time to restore the starting node is not important, as it is logarithmic in the
search tree size.
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5.3 Search tree nodes random sampling

The ideal would be to know a priori how to equally partition the search tree
without the need to traverse it at first, as the time needed to traverse all the search
tree nodes is equivalent to the sequential search time. Recall that our goal is not
to reproduce sequential search, but simply to find some search space splits to
explore them in parallel.

5.3.1 Pre-estimating a node’s exploration time

Instead of exploring the whole search tree and then split it, we can traverse
a representative proportion of it. Our partial traversal does not need to know
anything a priori about the search tree. It does not need to know its size, height,
etc. It will simply traverse a part of it.

This can be accomplished by overriding (“deleting”) a proportion of the search
tree nodes and construct a table like Table 5.1}, that will contain fewer nodes than
the original one. This is a main contribution of this work: To produce almost equal
splits as the ones in Fig. without having to keep every node in Fig. and
Table but only the most representative.

Sampling addresses two critical issues.

Issue 1. If a node n; is overridden (passed by), how its time slice is replaced?

For example, if we override n, in Table E what would be the visit time for n?
Overriding n, does not mean to completely ignore n,; its corresponding duration
should be added to the visit time of n, because the new reduced table visit times
should be as close to Table real times as possible.

Issue 2. Deciding to override a node n; leads us inevitably to override all of its
offspring too.

E.g., the decision to override let us say n, in Fig. is in fact a tough one: By
overriding n, we override its offspring/descendant n, too.

But let us start sampling without considering the above issues initially.

Rule 1. Let R; be a randomly generated real number, uniformly distributed in
the range [0, 1]. Let n; be a tree node without descendants and p the simulation
factor, i.e. the minimum proportion of the nodes we want to override. Then, n; is
overridden if R; < p.

This means that a node with no descendants is overridden with probability at
least p. We say “at least,” because the precise probability to override n; must
additionally include the probability that one of n;’s ancestors is overridden.

Now we should consider what happens if the node n; has, let us say, d descen-
dants. Note that the term “descendants” refers not only to the nodes (children)
directly connected to n;, but to all the nodes that belong to the sub-tree below n;
(the children of the children etc.). In this case, if we override n; with probability
p, this will override its descendants too. However, what we initially wanted was
to override each separate node with probability p. Therefore, the probability to
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override n; and its d descendants should be:

Pr[n; overridden] - Pr[1%t descendant overriden] - Pr[d™ descendant overriden].
(5.1)
This is at least p - p? = p'*?.

Rule 2. Let R; be a randomly generated real number, uniformly distributed in [0, 1].
Let n; be a tree node with d descendants and p the minimum proportion of the

nodes we want to override. Then, n; is overridden if R; < p'a.

This is a simple workaround for Issue |2/ above that also guarantees that the
average proportion of the overridden nodes will be at least p.ﬂ

5.3.2 Pre-estimating a node’s descendants number

Rule [2| does not completely resolve Issue [2. When we are about to decide
if a node will be overridden or not, with probability p’*?, we should know the
descendants number d. But this is not possible a priori, because we have not yet
traversed the very node itself!

The solution is to make a pre-estimation of d, based on the previous history.
In order to step forward, we make the following general assumption.

Assumption. Each node is expected to have a similar descendants
number and a similar time duration to the other nodes that belong to
the same tree level. In other words, the nodes that have equal distance
from the root are expected to have similar descendants and duration ]

Take for example the lowest leaf nodes in Fig. 5.5, The node with the label t, is
examined on whether is going to be simulated. At first, we need to pre-estimate its
descendants number d. According to the above Assumption, the node with t, tag
will have a similar d with the other nodes in the same level (t,, t,, t; tags). Each of
these has zero descendants. Consequently, the average d is also (0+0+0)/3 = 0.

Hence, the node with t, tag will be overridden with probability p'*? = p. And
here comes Issue([l} If the node is indeed overridden, how its simulated duration
t, will be computed?

The duration is computed exactly in the way that we computed d: as the
average of the existing non-simulated nodes in the same level.

2,1
T . (5.2)

t
3

In fact, we put appropriate weights on the sum’s terms, and we calculate the
weighted average duration.

1Again, we say “at least,” because the precise probability to override a node must additionally
include the probability that one of its ancestors is overridden.

2Besides, one node that is closer to the root is expected to have a larger lifetime than a node
that is closer to the leaves. It can be demonstrated that the nodes of a specific level have a low
standard deviation of their durations. Moreover, the multiple simulation (MapReduce) rounds
described in a following section apply the simulation on smaller search tree parts, where the
standard deviation is even smaller.
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Figure 5.6: T, is the simulation time for another node

Rule 3. If we want to override a node n its virtual time duration is estimated

ast. = Z”
ISk 1w
have not been simulated themselves. The descendants number dj of n; can be

j-1
ZI 1w:di

j-1
z11"'-)

. The sum refers to the nodes n; in the same level with n; that

pre-estimated exactly in the same way: dj =

Last but not least, we have to define the above w; and w; so as to be flexible
in cases such as the one in Fig.[5.6] In this figure we want to estimate the time
T, (and, of course, the same applies to the corresponding descendants’ number).
Observe in the figure that T, is not as accurate as T, is, because T, includes the
virtual duration t, that was computed in the previous paragraphs. Hence, T, is
more virtual than T, and we have to reduce appropriately its weight.

t;

Rule 4. The weight for each time term t; in Rulei is calculated as w; = M,
where t . .4 IS the aggregate simulation time for the descendants of n;. the

d' d5|mulated
similarly, the weight for each descendants term d. is w; = d— where d . e

is the sum of the d s for the descendants of n; that have been simulated and not
visited in reality.

Note that if t;  ed (OF Aaimuiated) 1S Z€T0, the weight w; (or w;) becomes equal
to 1. Experimental results about using the above w; and w; formulas or simply
setting them always to 1 are presented in the “Empirical Results” section.

Finally, we cannot override the very first node n; in each search tree level, as
we cannot compute the duration t; and descendants’ number d; based on the
previous nodes in the same level.
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5.4 The MapReduce input specification

In our MapReduce setup, a Mapper plays the role of a worker that has to
explore a specific part of the search tree. The Reducer’s role is trivial: an identity
function that reproduces its input, i.e. the solutions provided by the Mappers.

Before reaching the Mappers, the MapReduce system normally gets an input
text file as input. Then, it splits the text file into smaller ones, which are eventually
distributed to the Mappers. The default and straightforward way to split a big text
file is to create one file out of each line. In any case, splitting a large text file and
distributing it to the Mappers is automatically done by the MapReduce system
itself.

What is this input file in the first place? For Fig. [5.4]we may have the following
text file as input.

As described in Section [5.2] the real content/encoding of the above is

[1]..11,2,2]
[1,2,2]..12,2]
[2,2]..12,3,2]

This is then split into three files: one file per line. Each of the three files “feeds”
one Solver, as in Fig.[5.3

The file containing the second line [1, 2, 2] ..[2, 2] will trigger DFsPART(1, Sibling,
[1,2,2], [2,2]) as in Example [13]

Please note that the above text file can be furthermore simplified by omitting
the very first and last nodes, as they are not necessary.

-11,2,2]
[1,2,2]..12,2]
[2,2]..

To sum up, from right to left, Reducers simply echo their input, and Mappers
process one line which represents a part of the search tree. All the parts are
stored in a big text file which is the input of the whole MapReduce system.

5.5 Slicing the search tree

Having specified the big data file format, it remains to be seen how this text
file is initially created.
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Figure 5.7: Needed time to explore each node and its descendants. The time of a
parent node includes the time needed by its children.

5.5.1 Slicing the search tree by repeating sequential search

One simple way to generate the big text file (which represents the “big data”
in the MapReduce terminology) is to execute DFsVARORDHEUR and record every
X milliseconds the next search tree node to be visited using the aforementioned
specified file format. Then, MapReduce would supply each line to a Mapper-Solver
and expect that each of them would process the corresponding search tree part
and output its solutions within X milliseconds.

Figure presents a search tree with a tag above each node. Each tag
represents the cumulative time (e.g. in milliseconds) needed to explore the node
and its descendants (included).

Table displays when each node in Fig. is visited in a vertical timeline.
The horizontal rules delimit the table into four parts that take about 12 milliseconds
to be explored each and can be encoded to the following text file that could serve
as a MapReduce input file.

For the sake of simplicity of the example, each time we make the transition
from a parent node to a child (e.g. from n, to n, or from n, to n,) we keep the
clock unchanged. We change the clock when we have to move to a node of less
or equal level, for example when we have to move from n, to n, or from n, to n..
In these cases, we find the previous node Norey in the same level with the node we
are currently visiting. We compute the current clock time by adding to the clock
time of Norev the time torev that we spent visiting it.

Unfortunately, this way of creating the big input file would last the same time
as the whole sequential search, because we have to explore all the search tree
nodes to construct it! We definitely need a faster way to generate this big text file

in order to benefit from the MapReduce approach, end-to-end.
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Table 5.2: A timeline while exploring the nodes in Fig.

clock | level 1 level 2 level 3
0 n,
n,
n;
3 n,
6 ng
Ng
8 n,
12 ng
Ny
N1o
13 Ny,
18 ni,
Nq3
21 n,,
26| n.g
Nig
nq7
32 Nig
Nig
33 N,
38| n,,
ny,
Ny3
42 n,,
46
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Figure 5.8: Estimation of the exploration time of the skipped (grayed-out) nodes

5.5.2 Slicing the search tree by mocking sequential search

The purpose of the big data generation is to output in a file only a tiny portion
of the search tree nodes which delimit search tree parts that need an equal time
to explore them. Hence, it is not necessary to visit all the search tree nodes in
order to produce a small subset of them. As we already said, we can visit only a
few of the nodes at the same depth and then skip the rest of them while adding to
a virtual clock the estimated time we saved up while skipping these nodes.

Just like the approach where we interrupted search every X milliseconds and
recorded the next node to be visited, now we interrupt search every X milliseconds
of the virtual clock. Thus, we are able to speed up the big data generation, but we
pay the price of not being accurate in having splits of exactly X milliseconds, as
we use a virtual clock.

A simulation example

Figure[5.8|displays the search tree of Fig.[5.7|with some of its nodes overridden
(simulated/grayed-out) and the subtrees below them deleted. Above each grayed-
out node there is a box containing an estimation of the time that the exploration of
this node would have taken. These estimations are used in order to proceed with
sampling the search tree without exhausting all the nodes and without spending
the time needed to visit all of them.

The nodes that are parents (or grandparents etc.) of the simulated search
tree nodes have their exploration duration inside dotted boxes. Parent nodes
include the time needed to explore their offspring, so the dotted boxes above them
signify that part of the included time is an estimation, i.e. that the exploration time
is partially real as some of the offspring have been simulated and overridden.

Similarly to the previous Table [5.2] Table [5.3)illustrates the times when each
node of the search tree in Fig. 5.8/ was visited. While this time is measured in
milliseconds again, please note that the clock is virtual. This means that when
we visit a grayed-out node, we make a leap in time: the virtual clock in the first
column is updated without spending real time.

Tablecontains a column with the probability p'*? that the current node is
overridden. For this example, we set p = 0.1. In practice, p will be normally set to
something much greater than 0.1 in order to speed up simulation; this small value
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Table 5.3: Atimeline while sampling the search tree nodes

virtual descendants | simulation
clock | level 1 level 2 level 3 | pre-estimation | probability
0 n, — —
n, — —
n, — —
3 n, 0 0.1
6 ng 2 0.001
ng 0 0.1
8 n, 0 0.1
12 Ng 6 0.0000001
ny 2 0.001
Nio 0 0.1 simulated
14 ni, 0 0.1
19 n,, 2 0.001 simulated
25.89 | n, 6 0.0000001
N6 2 0.001
n,, 0 0.1
31.89 Nig 1.75 0.0018
N, 0 0.1 simulated
34.72 Ny 0 0.1
39.72 | n,, 5.63 0.00000023 | simulated
52.74
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is used here plainly for illustrative purposes.

There is also a column with the pre-estimation of the descendants number
d. For each row of the table, a random number in [0, 1] is generated. If p'*? is
greater than the random number, then the current node is overridden/simulated,
and this is noted in the last column. Everything depends on the random number
and how big the probability is.

The very first node in each search tree level (n,, n,, n;) was in purpose not
simulated. They cannot be simulated as there are not any previous nodes in the
same level that would allow to make a pre-estimation of how much time a node in
this level would need to be explored and how many descendants it has.

Let us proceed with explaining Table row by row. The visit durations (t;
values) are indicative.

» The virtual clock is initially set to O.

» For the very first node of each search tree level, the sampling method is
proceeding as usual: Each of the nodes n,, n,, n, is visited.

 Forn,, the time t,=3 and the descendants number d3 = 0 is recorded.

« We are aboutto visit n,. From now on, we can use previous nodes to estimate
the time that the next node would need and its number of descendants without
having to visit it.

» Furthermore, from now on, we generate a random number in [0, 1] for each
node. If the random number is greater than p'*?, we literally visit the node,
else we simulate it.

 Based on the previous nodes of n, (only n;) in the same search tree level,
we pre-estimate d, to be 0. Therefore, the probability to simulate n, is

p,=0.1"0=0.1.

* Let us say that the random number R, for this node is 0.6. As p, < R, we
will not simulate this node.

e Thus, the search method is normally exploring n, and finally records t, =1
andd, = 0.

* The search method then returns to n, for the last time. Before we return to
n,, we record d2 = 2 which is the total number of nodes under n, and t, =6,
which includes t, +t, plus 2 which is the time spent by n, itself.

« Itis time to check if we will literally proceed to n g or simulate the visit. The
(only) previous node in the same level had d, = 2 descendants, so we
pre-estimate that d. will be 2 too. Therefore, the probability to simulate n is

ps =p'*?=0.1""2 = 0.001.

* Let us say that the random number R. is 0.3. We have p. < R, so the node
will not be simulated.
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« In the same fashion, let us say that the leaves-nodes n, and n, will not be
simulated too. We just traverse them and record the relevant times t, = 2,
t, =2,and, as we ascend back, t; =t  +t,+1=5andt, =t, +t; +1 =12

* The corresponding d; values are also recorded: d. = 2 and d, = 6, which is
the number of all the nodes in the subtree under n,.

» Actually, we have completed the traversal of the leftmost subtree without
simulating any of its nodes. Let us continue with ng.

+ We pre-estimate the number of descendants dg based on the (only) previous
node n, in the same level. Hence, dg is pre-estimated as 6. The probability

to override/simulate n is therefore pg = p'*¢ = 0.17*6 = 0.0000001. Let
Rg = 0.35. Again, the node ng will not be simulated as pg < Rg.

+ We proceed to ny. We pre-estimate d, as the average (d, +d)/2 = 2. The
probability to simulate ng is py = 0.1"*2 = 0.001. For another time, let us
suppose that p, < Ry The node will not be simulated.

« Stepping one level deeper to n,,, the pre-estimation of d,, is 0, as the
average of d,, d,, d,, and d,. Therefore, we have p,, = 0.1. LetR,, =
0.05. At last, this node will be simulated, as p,, > R,,. We will not spend
any time here e.g. to propagate or validate constraints. We just record
the estimation of time that a real visit to n,, would take as the average
to = (t;+t, +t, +t.)/4 = 2. We also set d,, = 0: the pre-estimation is
permanently assigned to d, .

« We are moving forward to n,,. The virtual clock counter is increased by
t,o = 2, but this time is virtual: the actual time needed for the simulation was
just the negligible time to compute an average value that is not comparable
e.g. with the time needed to propagate constraints.

* n,, is eventually not simulated, we record t,, =2 and d,, = 0, and we step
back to n,.

« While we are leaving forever ny, we record t;, = t,, +t,, + 1 =7. We have
also to record somehow that t, is “hybrid” time, in the sense that t,, is virtual
time (an estimate) and t,, is a real visit time. For this purpose, we use a
special weight defined in Rule [4] as

t, -t t,-t
W. = 9 “simulated -9

) = B x071,
t9 t9

The weights for all the other nodes on the same level are by default equal to
1. On the other hand, the weight of the simulated node n, is equal to 0 as
t,o is purely virtual.

+ We also permanently record d, = 2 as the descendants number of n,,.

« We proceed to n,,. Based on the previous nodes in the same level, we
expect that it will have 2 descendants, as this is the average of d,, d;, and d,.
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Hence, the probability to simulate it instead of visiting itis p,, = p'*? = 0.001.
It is a small probability, but let us suppose that the random number R, is
less than p,,.

* n,, is going to be simulated and, therefore, we should make estimations
about t,,.

* The weighted average of the nodes in the same level is

_W2t2+W5t5+W9t9=‘I-6+‘I-5+O.71-7

t.. =
12 W, + We + W, 1+1+0.71

=~ 5.89 ms.

« Finally, it is estimated thatd,, = 2.

* Back to ng, we compute t; =ty +t,, + 1= 13.89 ms. The weight for tg is
tg-t tg -t -t

simulated 8
W, = =

8 t

10~ *12

= 0.43.

8 8

We have dg = 2+d, +d,, = 6 descendants, as there are 2 direct descendants
of ng plus the descendants of ny and n,,. The corresponding weight is

_ CI8 B dsimulated _ dg-d
8~ d B

8

w = 0.67.

10-%2 6-0-2
8 dg 6
« We move to n,.. To compute the simulation probability, we have to pre-
estimate the descendants number. The pre-estimation is the weighted
average of the descendants of the nodes in the same level
widy +Wedy  1.6+0.67-6 _

6.
W, + Wy 1+0.67

* The probability to simulate n,g is 0.1"*®, but let us suppose that we will
literally visit the node.

We continue to visit or simulate the rest of the nodes in the same fashion until
the Figure and Table are completed. Finally, we are able to draw some
horizontal rules in the table and split it into (virtual) parts of 12 ms.

Apparently, the durations of the partitions in Tables[5.2]and do not coincide,
as in the latter table some of the nodes have been skipped, and the measured time
is less real and more “virtual” than the time in the former table. The virtual clock in
Table [5.3]implies that we spent less time to construct the “big data” MapReduce
input file.

5.5.3 How much does simulation cost?

The time needed to make a simulation is at most equal to the proportion 1 - p
of the total time needed to explore the search tree.

In the above indicative example, the whole simulation process takes 90% of
the total time needed to solve the CSP as p = 0.1. But this is clearly inefficient! In
practice, we use much greater simulation probabilities, such as p = 0.999 as in
the empirical results section.
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5.5.4 Multiple MapReduce rounds

If the Mapper/worker reaches a given timeout (e.g. 60 seconds for a split that
was pre-estimated to last 10 seconds) while trying to produce solutions, it stops.
Then, the Mapper splits the remaining search tree part, and the Reducer records
the splits to a common file that will be used as an input to the next MapReduce
round. If in the current round no worker times out, then no splits are produced,
and MapReduce has completed traversing the whole search tree.

Example 14. Let us say that a Mapper-worker gets the line n,..n,, as input. The
worker has to traverse the search tree part between these two nodes. Let us also
suppose that each line is supposed to be traversed within X = 10 ms.

Nevertheless, we have reached the timeout of 60 ms, and we are still in node
ne. Unfortunately, we underestimated the duration of n;..n,.

In this case, we stop the traversal of n., and we simulate again the traversal
ng..n,, in order to produce new search tree parts (e.g. n,..ng and ng..n,,) and
record them in a new input file for a new MapReduce round.

5.6 Empirical results with MapExplore

Based on the theory of the previous sections, we created MapExplore, a
system that integrates Constraint Programming into the MapReduce framework.
We integrated NAXos SOLVER, our generic CSP solver written in C++ [67], inside
Hadoop 2.7.1, a popular MapReduce environment. The source code for our
evaluations is freely available [

We installed Hadoop on eight Ubuntu Linux 14.04 virtual machines in the
cloud [51, 52]. Each machine had eight 2 GHz CPU cores and 8 GB memory.
The detailed hardware (e.g. CPU) specifications in the cloud are not available
due to the so-called virtualization. One of the machines was selected to act as
a coordinator (master) of the other seven machines (slaves). The master had a
60 GB disk and each slave a 40 GB disk. In our setup, the master machine also
served as a slave machine, in order to save up as many CPU cores as possible.

5.6.1 Sequential vs. simulation time

Our NAxos SoLVER is capable of solving any CSP. In these evaluations, we fo-
cused on N Queens and Number Partitioning and targeted to find all their solutions.
The N Queens problem objective is to place N queens on a NxN chessboard so that
no queen attacks any other. The objective of the N Number Partitioning problem is
to split the set S = {1, 2,..., N} into two disjoint sets S, and S, with equal cardinality,
where N is even. Also, it should hold that 3. . i = 3. . jand 3, =Y. _j%

1 J€ES, i€S, J€S,
Tables and display the time needed by a sequential search method to
solve specific instances of these problems and find all the solutions of them.

3http://di.uoca.gr/~pothitos/CPMR
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Table 5.4: Sequential time in seconds to solve N Queens

N H 15 ‘ 16 ‘ 17
Sequential Search H 1,212.7 ‘ 7,902.5 ‘ 57,910.9

Table 5.5: Sequential time in seconds for N Number Partitioning
N H 40 ‘ 44 ‘ 48
Sequential Search H 3,365.7 ‘ 37,860.9 ‘ 44,2013.4

5.6.2 MapExplore parallel/distributed execution time

In our introduced MapExplore system, the simulation incorporates a random
factor: there is a probability whether a tree node will be visited or not (1%o vs.
999%., which imply a simulation probability p = 0.999). Thus, we repeated our
experiments three times.

The figures that follow illustrate the standard error (SE) between the runs
initiated with different random seeds. The standard error (SE) is defined as the
ratio of the standard deviation (SD) of the recorded times to the square root of
the number of samples, i.e. SE = SD/\/H, where n = 3 repetitions. The standard
error is depicted as an “I” on top of each measurement in the figures, just to get
an idea of the possible variance between the samples. The standard error is not
visible in most figures because it is small.

The simulation method provides a text file with many records in the format
Ngari-Neng- E@Ch record is actually a part of the search space. The whole text
file is the input for our MapReduce system. The file is automatically divided by
Hadoop and each record is sent to a Mapper, which serves as a worker-SOLVER
as in Fig.[5.3

Each SoLveR instance traverses the search tree part that corresponds to its
input record, outputs the solution in it, and then waits for another input record.
MapReduce automatically gathers all the solutions found by all the Mappers into
a single directory.

The whole wall clock time for our MapExplore process, from the search tree
sampling to the solutions gathering is illustrated in Fig.[5.9and [5.10] Each subfig-
ure corresponds to a different CSP instance. The xx’' axes depict the number of
the Mappers used in our MapExplore system. The whole wall clock time includes
the sampling phases and all the MapReduce rounds which were in general no
more than five.

The Mappers number is very crucial as it is in fact the number of the workers/
solvers employed. For most instances, the times are reduced while the Mappers
number increases. This is something desirable as it seems that we can exploit to
some degree every single available worker.

Nevertheless, the times for the Mappers number above 64 are reduced slightly
or, especially for 15 Queens and N =40 Partitioning, get even bigger. The expla-
nation for this behavior is that, in reality, we had only 64 CPU cores available.
Even if we add more than 64 workers/solvers, these solvers have to share only
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Figure 5.9: Time needed to get all the solutions of N Queens
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Figure 5.10: Time needed to get all the solutions of N Number Partitioning
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64 cores; only 64 solvers can be active at the same time.

And why for smaller instances the times get worse as Mappers increase? The
answer is that Hadoop and MapReduce in general are a framework for big inputs
and outputs. Hadoop’s overhead is apparent when creating more Mappers than
needed.

Figures[5.11|and [5.12|display the corresponding speedups that MapExplore
offers in relation to the sequential search process. The speedup is computed as
the ratio of the sequential to the parallel execution time. As the instance gets
bigger, we have bigger speedups, almost 35. Recall that MapReduce suits better
to processes with big inputs/outputs.

Last but not least, in Fig. one can see that if we use the weight w;
introduced in Rule [4] the overall time to solve N Queens instances is improved.
For the experiments in Fig.[5.13|we used 128 Mappers.

5.7 Conclusions

Today, due to the availability of so many cores and virtual machines in the
cloud, it is not enough to propose just efficient algorithms. These days, one has to
create scalable algorithms and fairly distribute their execution to as many workers
as possible. The state-of-the-art framework to achieve this is MapReduce, initially
introduced by Google to process the whole Internet.

In this chapter, MapReduce was adopted to explore the huge search space
of CSPs. MapReduce is designed to process big data files, so in this work the
search space has been shredded into small parts, and the parts were encoded
and assembled into a big text file. In related works, the search space is divided
in a top-down manner. In this work, the search tree exploration was sampled,
and for the first time the partitioning was done plainly in terms of time, without
having to consider the search tree topology. Each small search tree part is a line
in the big MapReduce input text file. Finally, it is the responsibility of MapReduce
to distribute the lines of the big text file into the available solvers, to utilize all
available resources, to keep a load balance between them, and to collect all the
solutions found.
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6. THE REVENGE OF BOUNDS CONSISTENCY

My power is made perfect in weakness.
2 Corinthians 12:9

Arc consistency enforcement is an intelligent way to transform a Constraint
Satisfaction Problem in order to reduce its search space. While current research
focuses on stronger consistency levels than arc consistency, this chapter illustrates
that in many practical cases the “weaker” bounds consistency can be used, making
search more efficient. This paradox is theoretically explained for the first time [73].

i
\

We highlight consistency enforcement as an essential part of the solving
process and we develop criteria that help Constraint Programming solvers select
the fastest between arc consistency (AC) and bounds consistency (BC), without
human intervention.

For the sake of simplicity and without loss of generality, in this chapter we will
focus on binary CSPs. In binary CSPs, each constraint G = (Sij'Rij) connects
exactly two variables, i.e. S; = {X;, X;}. The R;; set contains the valid combinations
of the values of the two variables.

6.1 Consistency enforcement

Consistency is a particularly useful property in the road to solve a CSP. It
implies that the values of the domains of each variable have a kind of support with
respect to the CSP constraints. For the sake of readability, we repeat Definition
here as

117 N. Pothitos



Constraint Programming: Algorithms and Systems

Definition 10. An arc (X,.,Xj) is arc consistent iff for each v; € D, there exists a
v; € D; with (v,.,vj) not violating C;.

Example 15. Let X, and X, be two constrained variables with domains D, = {1, 2, 3}
and D, ={2,3,4,5,6,7}. Let us assume that the constraint between the variables
is X, = 2X,.

(X,,X,) is arc consistent, as for each of the values 1, 2, 3 in D, the correspond-
ing values 2, 4, 6 belong to D,.

On the other hand, (X,, X,) is not arc consistent. To prove this, we need just
one value from D, that does not have any support in D,. Indeed, for the value 3 in
D,, there is not any v, in D, with 2v, = 3.

If we want to make (X, X,) arc consistent, we should remove the values 3, 5,
7 out of D, as they do not have any supports in D,.

This example also illustrates that consistency is not a symmetric property.

In order to check if an arc (X,.,Xj) is arc consistent, we have to iterate through
all the values of D;. The function that does this and removes the unsupported
values from D; is called Revise. A faster yet looser alternative would be to check if
the arc is bounds consistent.

Definition 11. An arc (X,.,Xj) is bounds consistent iff for the min D; and max D,
values, there exist some v, v, € D; with (min D;, v,) and (max D;, v;) not violating

c,.j.ﬂ

In this case, Revise has to check and update only the two bounds of D;. But, in
the worst case, when no support is found, it has to iterate through all D; values
too.

Example 16. Again, let X, and X, be two variables with D, = {1,2,3}, D, =
{2,3,4,5,6,7}, and X, = 2X,.

(X;,X,) is bounds consistent, as for each of the bounds 1 and 3 in D,, the
corresponding values 2-1 =2 and 2 - 3 = 6 belong to D,.

Nevertheless, (X,, X,) is bounds inconsistent, as the upper bound 7 of D, has
not any supportin D;.

If we want to enforce bounds consistency to (X,, X,), we should remove 7 out
of D,. Note that only one removal is needed in the case of bounds consistency
enforcement in contrast to the three removals needed by the arc consistency

enforcement for the same domains in Example [15]

Lemma 4. Both arc and bounds consistency enforcement have equal time com-
plexities in the worst case.

Proof. Time is measured by counting the number of elementary steps that each al-
gorithm takes. We use the common uniform unit system in which every algorithm’s
operation takes the same constant time [96].

In order to compute the worst-case complexity of enforcing arc consistency,
we repeat here the following procedure, already stated in Section [2.3.3]

1Formally, Definition is about the so-called bounds(D) consistency [10]. On the other
hand, in the bounds(Z) consistency variant, v, and v, do not just belong to Dj but to its superset

[min Dj .. max D}.]. Furthermore, the range consistency bounds(R) variant examines if every v; € D;
(not just min D; and max D;) has support in [min Dj .. max D].].
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1: function REVISEAC(XI-,Xj)

2 domain_is_modified « false

3 for each v, € D, do

4 value_is_supported « false

5: for each v; € D; do

6: if (v,.,vj) € Ry, with C; € ¢ then
7 value_is_supported « true
8
9

break
; end if
10: end for
11: if value_is_supported then
12: continue
13: else
14: Remove v; out of D;
15: domain_is_modified « true
16: end if
17: end for
18: return domain_is_modified

19: end function

Let d be the maximum domain size. Then, line [3| performs at most d iterations.
Each of the Iines, , and is 1 elementary operation. Theloopin Iineperforms
at most d iterations. The statements inside this inner loop are at most 3 elementary
operations. Finally, lines consist at most 5 elementary operations.

Overall, we have at most 1+d - (1+d -3 +5) + 1 elementary operations, which
is 0(d?).
Bounds consistency enforcement is a variation of the above.

function REVISEBC(Xi,Xj)
domain_is_modified « false
for each v; € D, in ascending order do
value_is_supported « false
for each v; € D]- do

if (v;, vj) € Rl.j, with CU € ¢ then
value_is_supported « true
break
end if
end for
if value_is_supported then
break
else
Remove v; out of D;
domain_is_modified « true
end if

2\We suppose that one elementary operation corresponds to one line of code execution. Russel
and Norvig mention that “some measure that reflects the running time of the algorithm but is not tied
to a particular compiler or computer [...] could be just the number of lines of code executed” [83].
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end for

for each v; € D, in descending order, with D; # @ and v; > min D, do
value_is_supported « false
for each v; € D; do

if (v,.,vj) € Ry, with C; € ¢ then
value_is_supported « true
break
end if
end for
if value_is_supported then
break
else
Remove v; out of D;
domain_is_modified « true
end if
end for
return domain_is_modified
end function

Typically, ReviseBC is similar to ReviseAC, but contains two loops instead of
one. The number of elementary steps inside each loop is still at most (1+d -3 +5).

The number of iterations of the first loop plus the number of iterations of the
second loop is at most d, because, in the worst case, the algorithm iterates through
all the values of D;. Each respective value of D, is visited at most once.

Overall, similarly to ReviseAC, the number of elementary operations is again
1+d-(1+d-3+5)+1whichis 0(d?). ]

In a nutshell, enforcing arc or bounds consistency between a pair of constrained
variables (X,.,Xj) takes the same time if X; has not any support in Xj, which results
in removing every value out of D;. This is the worst case.

Nevertheless, in a better case, if REviseBC finds a support, it stops the corre-
sponding iteration through D; values, while ReviseAC always iterates through all
of them.

6.2 Our contribution and alternative approaches

From Constraint Programming early years, developers of solvers such as
I|_o have observed empirically that there is a trade-off between arc and bounds
consistency in terms of time and space, and bounds consistency is preferable in
many cases [85]. More specifically, Barbara Smith quotes Jean-Francois Puget
who mentioned

Solver is a compromise between efficiency and completeness... In
the example [of constraint propagation of arithmetic constraints] the
incompleteness comes from the fact that arithmetic expressions only

3http://ilog. com
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propagate bounds. This is an example of the choice we made. Prop-
agating holes in expressions [i.e. enforcing arc consistency] would
require much more memory and time than the current implementation.
From tests made on a very large set of examples, we found that the
current compromise is by far better.

In alternative approaches to our work, in current constraint programming
solvers, the choice between AC and BC is not justified theoretically but only em-
pirically. In our work, apart from wide experimental results, we provide theoretical
analysis for the AC vs. BC trade-off so as to predict when arc consistency becomes
a bottleneck. We show that bounds consistency is usually more efficient when
dealing with CSPs having large domains.

This could be thought of as a paradox, because AC and BC have equal worst-
case complexities, and AC is stronger than BC, in the sense that it removes more
inconsistent values out of the domains of constrained variables. This is true, but
only when we study the constraint propagation algorithms isolated, independently
of the search methods. In this work, we try to see the big picture: constraint
propagation integrated into backtracking search methods. We compute the overall
time complexity and focus on how it is affected by the choice between AC and BC.

In Section [6.3|we present the backbone of constructive search and the related
mathematical notation. In Section we compute the upper bounds of the
complexities of search methods that traverse a path and maintain either AC or
BC. In Section [6.5 we check in practice if the theoretically computed complexities
can predict which methodology, AC or BC, fits better a given CSP. Finally, in
Section [6.6|we introduce a bounds consistency variant that enforces consistency
not to all (n) constrained variables but to a varying (R) number of them.

6.3 Constructive search

A backtracking approach involves a constructive search method that iterates
through the constrained variables of a CSP: it assigns to the first variable a value
and proceeds to the second variable, it assigns a value to it and, if the constraints
are not violated, proceeds to the third variable and so on. Backtracking occurs if
any of the constraints is violated: the current assignment is undone, and a different
value is assigned to the variable. If all alternative values from the variable’s domain
are exhausted, we go to the previous variable and assign a different value to it
and so on.

6.3.1 The typical backtracking search method

Figure [6.1]illustrates the recursive backtracking search method DFS (Depth
First Search) originally introduced in Fig.[2.4 Each DFS(?) call corresponds to the
variable X,. In order to solve a CSP, we call DFS(1), to begin with instantiating the
first variable X,. This call attempts to assign to X, a value from D.; hence, we may
have at most d different attempts to assign a value to X,, where d is the maximum
size of all the domains. Therefore, we have at most d subsequent calls of DFS(2).
Each DFS(2) calls DFS(3) and so on.
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1: function DFS(¥)
> The method reached the search tree level #:

2: D{', « D(,
3: foreachv € D, do
4: D, « {v} D AssignvtoX,
5: if no constraint is violated then
> Proceed to the next variable/level:
6: if £ = n then
7: return success
8: else if DFS(? + 1) = success then
9: return success
10: end if
11: end if

12: end for

13: D, « D,

14: return failure
15: end function

Figure 6.1: Atypical search method

~__root
level 1: D, « {1} D, « {2}
/SN /N
level 2: D, « {1} D, « {2} D, « {1} D, « {2}
/SN / /N
level 3: D3 < {1} D3 « {2} D3 « {1} D3 « {1} D3 « {2}

Figure 6.2: An incomplete binary search tree

For the sake of simplicity, a static variable ordering is kept while we assign
values to the variables. Therefore, DFS(1) will assign a value to X, DFS(2) will
assign a value to X,, etc. Nevertheless, our computations are still valid even if we
use another variable ordering heuristic.

This algorithm forms a search tree, as in Figure[6.2] The indicative CSP used
in this figure contains three variables X, X,, X;, with the corresponding domains
D, = D, = D, = {1,2}. Each level ? of the tree refers to a DFS(?) call, and each
node of the same level represents an iteration of its for loop. More specifically,
each node is labeled with the assignment done in line [4]

We have at most d" leaves representing the lowest level DFS(n) calls, where
n is the number of the constrained variables.

Apart from DFS, there are many other constructive search methods [72]. In
any case, DFS is the basis to describe most of them.
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6.3.2 A search tree path

We denote as Tpath the total time spent in the nodes that belong to the same
path. A path begins from the root node and descends to a leaf node. The dotted
line in Figure [6.2)is a path.

Tpath({’) is a part of T,
traversing a path.

In the rest of the chapter, the “AC” or “BC” exponents in the above symbols
refer to the corresponding AC or BC methodology. For example, TAS (#) is the

path
time spent in a node of level £ while maintaining AC.

and denotes the time spent in a node of level £ while

6.3.3 Paths vs. trees

Throughout the rest of our theoretic computations, we measure the time spent
in search tree paths, instead of focusing on the time spent while traversing all
the paths of a complete search tree. This is done on purpose, just to simplify our
computations.

After all, as it will be proved in the last theoretic section[6.4.4), if we manage to
bound the time needed to traverse a search tree path, we are able to bound the
time needed to traverse the whole search tree.

Therefore, we are going to compute respectively an upper bound for traversing
a search tree path while maintaining AC or BC, and then multiply it by the maximum
number of paths to get an upper bound for the whole search tree.

6.4 Maintaining consistency during search

Depth-first-search method complexity is exponential; we cannot actually de-
crease its complexity class, but it is possible to limit the number of nodes. In other
words, we have to prune the tree to make search more efficient, and this can be
done via enforcing and maintaining consistency.

6.4.1 Time complexity in a search tree node

Figure illustrates a search method with an integrated consistency algorithm
that can maintain either arc or bounds consistency. We break up the time spent
by DFS_CONS(#) when it is on the top of the call stack into four crucial parts.

. Tprop({’) refers to the propagation algorithm in Iinesand respectively.

* Tyore(?) coOrresponds to line[g|of the algorithm and represents the time needed

to store all the initial states of the domains.

* T estore(f) COrresponds to Iineand represents the time needed to restore
all the domains. We claim that the time it takes to store the domains is equal

to the time it takes to restore them, i.e. Tore = Trestore-

After all, storing the value of a variable requires transferring a specific number
of bytes from one place of the memory to another. Re-storing the value back
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1: function DFS_CONS(¥)
D> Initially, enqueue all arcs and make them consistent:

2: if £ = 1 then

3: Q « {(Xi'Xj) | Cij € ¢}

4: CONS(Q) D> See Figure[6.4]

5: end if

[> Store a copy of the domains in & for a future backtrackﬁ

6: {D},..,D;} < {D,,...,D,}

7 for eachv € D, do

8: D, « {v}

D> Only the arcs toward X, are enqueued:

o: Q « {(X,X,) | C;p € €}
10: CONS(Q)

11: if not exists empty D; € & then

> Proceed to the next level:
12: if £ = n then
13: return success
14: else if DFS_CONS(? + 1) = success then
15: return success
16: end if
17: end if
> Restore the previous state of domains?

18: {D,...,D,} < {D;,..,D}
19: end for
20: return failure

21: end function

Figure 6.3: A search method that maintains consistency

function CONS(Q)
while Q # @ do
Remove an arc (X,.,Xj) out of Q
if REVISE(X,-,Xj) then
Q « QU{(X, X)) |C, €C, k#j}
end if
end while
end function

Figure 6.4: The core of a coarse-grained propagation algorithm (AC-3)

4The assignments of storing the domains or restoring them back do not necessarily mean to
make a complete copy of the domain of every constrained variable. These two assignments imply
the need to store/restore only the modifications to the domains done in the current search tree
node.
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to the variable (the original place of memory) involves the same number of
bytes and, therefore, the same number of operations to transfer them back.
T corresponds to lines |8 and 1/ These statements take constant

_const
time.

In order to get the aggregate Tpath time, we are going to compute the overall
propagation and store-restore time for a search tree path, which is a route from the
root of the tree (£ = 1) to any of its leaves (£ = n). This means that we will study the
overall time of DFS_CONS(1), DFS_CONS(2), ..., DFS_CONS(n) consecutive
calls, each of them executing only one iteration of the for loop in line[7] The overall

path time is at most

T

path = T

path(P)

n n

Tprop(l?) + z Tstore(f) * Z Trestore({)) + z Tconst

n
£=1 £=1 £=1

n
TIOFOIO({)) +2- z TStOFe(P) +n- Tconst' (6-1)
£=1

M=M= I

~
n

1

as Tcor]st remains the‘same for each L, .ar.1d, as previously explain.ed, Tiore = Trestore.
This formula applies both to maintaining arc and bounds consistency algorithms.
Nevertheless, according to the following table, there are some differentiations that

are going to be elaborated on in the following sections.

n

n
Path time terms Z Tprop(?) 2 Z Tstore({)) N Toonst
=1 £=1

Maintaining AC n?d3 2nd n - constant
Maintaining BC —— 2n? ——

Section Section m

6.4.2 The constraint propagation aggregate complexity

Consistency enforcement algorithms are divided into two large categories: the
coarse-grained and fine-grained algorithms [10]. The best algorithms from the
two categories have been proven to have equal time complexities [12]. Therefore,
without loss of generality, in order to study consistency enforcement as a whole, it
suffices to simply focus on a typical coarse-grained algorithm, such as CONS in
Figure[6.4]

CONS is initially called by DFS_CONS (Figure [6.3, lines[2H5) before actual
search begins. The other propagation section (Figure [6.3] lines inserts
some more arcs into the Q and then invokes CONS again.

By replacing the two CONS calls in Figure by its pseudocode in Figure
we are able to compute the overall time for the two propagation sections (lines
[2Hpand of DFS_CONS as the product of the number (E, ) of the inserted-
removed arcs out of the Q and the time that Revise takes.
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We may have at most E, ,_, = n? - d entry operations into the queue Q, where
n? = n(n - 1) denotes the maximum number of the arcs (X,-,Xj) with X;, X; € 2" and
I # j. After all, each specific arc (X,.,Xj) is initially inserted into the queue and also
when a value is deleted out of Dj. Therefore, a specific arc is inserted at most
1+d = d times into the queue, as a value cannot be deleted more than once while
descending a search tree path.

In a search tree path, the domains gradually shrink, until they contain just one
value in the last level or until a domain is “wiped out.” An arc (X,.,Xj) is enqueued
when Revise deletes a value from D;, and also when X; is assigned a value. An
assignment is equivalent to deleting all the values in Dj, apart from one.

To conclude, we may have at most d deletions of values out of a domain, which
can enqueue a specific arc. In sum, we may invoke at most d Revisk calls for a
specific arc.

Following Section , a Revise call takes approximately d? elementary steps.
Overall, the propagation part of DFS_CONS will take approximately

n
Z Tprop({)) = Eiotal - d?
£=1

=n%d - d?

= n?d3, (6.2)

which is the product of how many insertions we may have into the queue (E,,)
anzd the Revise function operations needed when an arc is popped out of the queue
(d9).

The same reasoning applies to faster—yet more complex—propagation al-
gorithms [12]. The only difference is that these algorithms implement faster (but
more memory-consuming) Revise functions that still take the same time either for
AC or BC.

Again, the important thing for the current theoretical analysis is that, in the worst
case, the propagation time complexity remains the same, either while enforcing
AC or BC. However, there are significant differences regarding the domains store
and restore mechanism.

6.4.3 Backup and restore aggregate complexity

In the general case, constraint propagation cannot guide us directly to a solution.
However, it can be a critical component of a backtracking search method: each
assignment made is followed by consistency enforcement and each consistency
enforcement is followed by an assignment.

If the constraints are violated, the last assignment is undone. This is a constant-
time operation in a consistency-enforcement-free search method. But while a
search method maintains consistency, the undo operation involves not only un-
doing an assignment, but also restoring the domains affected by the consistency
enforcement after the assignment.

Why do we need to compute the “restore” time along with the “store” time?
Theoretically, it would suffice only to store the modifications to the domains as we
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descend a search tree path. But we need also to take into consideration the time
needed to restore the domains back into their original state for two reasons.

1. No one can guarantee that the node we are currently visiting or the search
tree path that we currently descend will ultimately guide us to a solution. In
the worst case, we need to take into account the time needed to restore the
domains into their previous state, before the current search tree node was
visited. Then, we should try to visit another search tree node.

2. Even if the current search tree node does belong to a path that guides to a
solution, we may need to find all the solutions and not only one. Therefore, in
this case also we need to consider the time needed to undo the modifications
done in the current search tree node.

Storing domains while maintaining arc consistency

As mentioned in Fig. 6.3 while descending a path, in each search tree node,
we need to store (and then restore) all the modifications done to the constrained
variables domains. By computing the total domain modifications number, we
compute the minimum time needed to store them, while descending a search tree
path.

AC enforcement may remove every value out of the domains of the n variables.
The maximum domain size is d; hence, we may have at most nd value removals.
As we descend a search tree path (from £ = 1 to n), each value can be only
removed and not added back to a domain. Thus, the total values removed and
stored for backtracking purposes in a single path is also bounded by

n
> TS0 =nd, (6.3)
0=1

which is the number of all the domain values in a CSP.

Example 17. Let us have four constrained variables X,, X,, X5, X, with domains
D, = {3,4}, D, = {3,5,6}, D, = {0,1,2,3,4,5}, and D, = {0,2,4,6,8,10}. The
constraints are X, # X,, X, # X5, X, # X5, and X, = 2X.

The following table contains the changes that take place in the above domains,
while searching for a solution to the problem.

Assignments Updates in domains
D, D, D,
D, « {3} 3,56(01,23,4510, 2,4 6, 8,10
D, « {5} 0,1,2 3 4530, 2,4, 6,8, 10
D, « {0} 0, 2, 4, 8, 8, 10
D, < {0}

Searching for a solution includes an assignment (first column) and enforcing
consistency to the rest of the domains.

First, in the first row, we make the assignment D, « {3}. As X, # X,, we should
remove 3 out of D,. Similarly, in the same row, we remove 3 out of D, as the
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second constraint is X, # X;. And as X, = 2X; and 2 - 3 = 6, we also remove 6 out
of D,.

This was a practical example of arc consistency enforcement after an assign-
ment takes place. We are still at the first level of the search tree.

As we proceed to the second row of the table, we make the assignment
D, « {5}. When we make an assignment, we proceed one level deeper into the
search tree. Every assignment is followed by constraint propagation. In our case,
we enforce arc consistency. As X, # X;, we should remove 5 out of D;. And as
2-5=10, we remove 10 out of D, .

In the third row, we make the assignment D, « {0}. The values 2, 4, and 8
are removed out of D,, as they do not have any support in D, anymore.

The last row is trivial, as we assign {0}, containing the only remaining value, to
D,.
This was an example on how assignments interchange with constraint propa-
gation during search. In the case of arc consistency constraint propagation, the
domains eventually lose all their values. This is done gradually, while traversing
the search tree levels. As we should be able to restore the domains in the state
that they were in each search tree level, while descending a search tree path, we

need to store every value of every domain (nd values).

Storing domains while maintaining bounds consistency

Again, while descending a search tree path, we need to know how many
modifications will be done to the domains, in order to compute the minimum time
needed to store (and then restore) them.

Bounds consistency can alter only the bounds of a domain. In order to store
the previous bounds of a domain, we need 2 operations: to record the domain’s
lower bound and to record the domain’s upper bound. At a search path node of
level ?, the 2 operations can be repeated for every variable’s domain; except for
the variables that have been already instantiated, i.e. the variables having only
one value in their domains.

These domains are excluded because there are not any other values in them
that can be removed; if the last value is removed, we do not proceed, and we
backtrack to a previous search tree level. In a search level ¢, the instantiated
variables are at least £ - 1. Therefore, the uninstantiated variables are at most
n -2+ 1. The overall time needed to store the initial domains in a search tree node
in level £ is

TEC () =2(n-2+1), (6.4)

store

which is the product of the two operations needed to store the two bounds of a
variable, and the number of uninstantiated variables.
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For all the nodes of the search tree path it holds

n

> TEC. (D)= (2(n-0+1))
P=1

2=1

=n(n+1)=n?. (6.5)

Example 18. Let us consider the same constraint satisfaction problem as in the
previous Example [17]

The following table depicts the state of the domains during search. Each
row corresponds to a search tree level. The table is different from the one in
Example [17] in the sense that it does not contain every value of every domain,
but only their bounds.

Assignments Updates in domains bounds
. D2 - D3 - D4
min max | min max | min max

D, « {3} 5 6

D, « {5} 0 4 0 8
D, « {0} 0 O
D, « {0}

Again, the assignments interchange with constraint propagation. After the first
assignment D, « {3}, we have to enforce bounds consistency. This means that
the minimum and maximum values of every domain should have supports to the
other constrained variables. If a bound of a domain does not have any support, it
is trimmed.

The initial minimum value of D, is 3. But as X, # X, and D, = {3}, this value is
not supported. Therefore, it should be removed out of D, and 5 becomes its new
minimum value.

Then, we make the assignment D, « {5}. As it holds that X, # X;, the upper
bound of D, which is 5, is not supported anymore. That is why in the second row
of the table, max D, has been trimmed to 4. Subsequently, due to the X, = 2X,
constraint and as the maximum value 10 of D, is not supported now, we delete it,
and 8 becomes the new maxD,.

In the third row, we assign {0} to D,. In this case, max D, should become 0 too,
as this is the only supported value through the X, = 2X; constraint.

This example illustrates that, in every search tree level, we need to store only
the bounds of the domains of the unassigned constrained variables, which is the
meaning of the above equation (6.4).

6.4.4 Will arc or bounds consistency be faster?

The answer to this question is unknown before we actually start and finish
solving a given arbitrary CSP. There is not any exact mathematical form to know a
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priori how much time each search methodology will take either while maintaining
AC or BC.

Nevertheless, we can bound the time needed by these search methodologies
using the above equations to compute the respective path times Téeft:h and TEaCth.
These two path times allow us not to compute the exact times for AC and BC (that
will be simply denoted as TIME, . and TIME. in the rest of the chapter) but at

least to get the respective upper bounds TIME . go,np @Nd TIMEG- 5ounD:

Proposition 1. If n < d, then TIME > TIME

TIME < TIME

else if n > d, then

AC BOUND BC BOUND'’

AC BOUND BC BOUND*

Proof. TIME,. and TIME. is bounded by Tpath if we multiply it by the maximum
number of paths. The maximum number of paths is equal to the maximum number
of leaves d". Therefore,

_ C
TIME ¢ gounp = d"- Ts\ath' (6.6)
- BC
TIMEg( gounp = d"- Tpath. (6.7)
By combining (6.1) and (6.2) we get
n
_ 2.3
Tpath =n°d°+2 Z Tstore({’) +n- Tconst' (6'8)

0=1
We specialize the above equation for AC and BC via (6.3) and (6.5).

AC _ n243 .
TIoath =n°d>+2nd+n-T_ .,

BC _ n243 2 )
Tpath_n d>+2n°+n Tconst'

(6.9)
(6.10)

which leads to Proposition [1] because

n<d
& 2n-n<2n-d

243 2 243
& ned® +2n +nT <N d +2nd+nTConst

BC AC
had Tpath < Tpath

o dnTBC < dnTAC

path path
< TIME < TIME

BC BOUND AC BOUND*

6.4.5 Discussion

To compute the overall complexity of exploring a search tree and maintaining
arc/bounds consistency, we considered the worst case, i.e. that all the possible
leaves of the search trees will be visited. One may argue that this is a paradox,
as the purpose of maintaining consistency is to prune as many leaves and paths
in the search tree as possible and never visit all of them.

This is true, but we considered visiting the whole search tree, as this facilitated
the mathematical formulas, and, after all, we just needed an upper bound for
the time needed to maintain arc/bounds consistency during search. Therefore,
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the times used plainly for constraint propagation (Tprop
consistency were considered equal.

In contrast to the time needed to propagate the changes in the constrained
variable domains, we focused on the times that a backtracking mechanism needs
to store these changes, and we found significant differentiations while maintaining
arc or bounds consistency.

We believe, furthermore, that the time needed to store the changes of the
domains has an immediate relationship to the memory needed by the two propa-
gation methodologies themselves. Conclusively, we believe that even when the
propagation times Tprop remain the same both for arc and bounds consistency,
there is still a differentiation in the memory needed to maintain each consistency
level (same as the above differentiation between TAS and TE€ ) that will unavoid-

. : ) _store 7~ " store
ably affect the respective propagation times too in practice.

) either for arc or bounds

6.5 Empirical evaluations

All the above theory was inspired by observations while solving artificial and
real-life constraint satisfaction problems. To test the theoretical results of this
work in practice, we consider all standard CSP instances taken from the First
XCSP3 Constraint Mini-Solver Competition [32]. The specific instances used in
the mini-solver track are available under the respective link in the competition
site ]

Tables 6.1}, (6.2, and [6.3] display raw experimental results, while Figure
depicts them graphically. But, before going through all these empirical results, let
us describe how one can reproduce them.

6.5.1 Methodology

In order to make comparisons, we had to employ two different solvers: one that
maintains arc consistency (AC) and another that maintains bounds consistency
(BC). Therefore, we took the open source NAxos SoLveR [67] and created its AC
and BC variants.

Note that the original Naxos SoLver implements several consistency levels
for various constraints. Consequently, we created two sets of patches, one that
implements pure arc consistency and another for pure bounds consistency for
every constraint employed. All patches are freely available.ﬁ

Similarly to the theory of this work, we considered only binary constraints
(that apply between two constrained variables) to simplify consistency enforce-
ment. Therefore, we binarized the global constraints (that apply to more than two
variables) that exist in some CSP instances by substituting them by groups of
equivalent binary constraints.

Finally, it is worth noting that, in order to be more accurate, the illustrated
CSP parameters n and d (number of constrained variables and maximum domain
cardinality in the CSP) are not taken directly from the CSP definition; they are

Shttp://www.cril.univ-artois.fr/XCSP17
https://github.com/pothitos/ACvsBC-Solver-Patches
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Table 6.1: CSP attributes and solution times while maintaining AC and BC — Part |

CSP n d| TIME,. TIME,.
aim-50-2-0-unsat-2 50 2 0.71 0.65
AlllInterval-007 25 13 0.07 0.07
Alllnterval-012 45 23 0.14 0.13
Alllnterval-016 61 31 0.20 0.19
Allinterval-035 137 69 0.65 0.91
AllInterval-050 197 99 1.42 5.27
AllInterval-080 317 159 6.65 203.52
bdd-15-21-2-2713-79-08 21 2 41.39 40.37
bdd-15-21-2-2713-79-16 21 2 | 2326.85 X
bgwh-15-106-35_X2 106 6 0.43 4.53
bgwh-15-106-36_X2 106 6 0.21 1.46
bqwh-18-141-09_X2 141 6 7.99 597.87
bqwh-18-141-31_X2 141 7 0.33 82842
bqwh-18-141-83_X2 141 6 5.18 837.63
color_X2 500 5 68.21 X
ColouredQueens-03 9 3 0.01 0.01
composed-25-01-25-3 33 10 0.09 0.04
composed-25-01-25-4 33 10 0.09 X
composed-25-10-20-5 105 10 0.31 1481.76
composed-75-01-25-6 83 10 0.22 X
cril-5_X2 42 81 55.06 X
Crossword-mlc-lex-h1501 | 225 26 11.34 X
Crossword-mlc-ogd-h2310 | 529 26 40.89 83.52
Crossword-m1c-uk-vg-4-8 32 26 11.39 14.81
Crossword-m1c-words-p20 81 26 0.65 0.58
driverlogw-01c 71 4 0.02 0.02
driverlogw-02c 301 8| 110.01 X
driverlogw-04c 272 11 3.03 50.28
driverlogw-08c 408 11 | 263.16 X
driverlogw-08cc 408 11 | 254.62 X
Dubois-021 63 2| 149.08 140.53
Dubois-022 66 2| 30395 291.51
€hi-85-297-30 297 7 84.50 0.33
ehi-85-297-98 297 7 0.32 0.34
€hi-90-315-13 315 7 0.27 0.30
€hi-90-315-37 315 7 0.34 0.33
geometric-50-20-d4-75-03 50 20 0.50 0.51
geometric-50-20-d4-75-46 50 20 13.79 X
geometric-50-20-d4-75-54 50 20 0.30 0.66
jnh-012 100 2 0.17 0.12
jnh-213 100 2 0.12 0.08
jnh-302 100 2 0.09 0.13
Kakuro-easy-015-sumdiff | 194 9 0.07 0.05
Kakuro-easy-079-sumdiff | 344 9 0.13 0.11
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Table 6.2: CSP attributes and solution times while maintaining AC and BC — Part I

CSP n d| TIME,. TIME,.
Kakuro-easy-084-ext 240 9 0.48 0.40
Kakuro-easy-109-ext 256 9 0.97 1.15
Kakuro-easy-150-ext 256 9 0.79 0.78
Kakuro-easy-164-sumdiff 344 9 0.30 0.30
Kakuro-hard-179-sumdiff 996 9 202 666.57
Kakuro-medium-016-ext 140 9 0.15 0.15
Kakuro-medium-020-ext 140 9 0.09 0.09
Kakuro-medium-055-sumdiff | 234 9 0.09 0.05
Kakuro-medium-162-ext 256 9 13.81 14.25
Langford-3-05 25 11 0.12 0.12
Langford-4-04 28 9 0.13 0.15
Langford-4-05 35 14 0.17 0.17
MagicHexagon-02-0000 18 7 0.14 0.09
MagicSquare-3-sum 17 9 0.02 0.01
MagicSquare-3-table 9 9 0.01 0.01
MagicSquare-4-table 16 16 0.24 0.11
MagicSquare-5-table 25 25| 139.94 1627.44
MarketSplit-03 151 100 | 1149.24 264.75
MarketSplit-05 153 99 | 674.29 309.90
MarketSplit-07 152 100 | 595.51 148.30
MarketSplit-08 154 100 | 292.73 115.03
MarketSplit-09 152 100 | 570.38 270.14
MarketSplit-10 151 100 | 243.32 14211
MultiKnapsack-1-03 235 2536 14.62 0.87
MultiKnapsack-1-5_ X2 239 4106 X 95.23
MultiKnapsack-2-16 274 1181 X 76.94
MultiKnapsack-2-21 342 1361 X 46.15
MultiKnapsack-2-22 342 1501 X 163.88
MultiKnapsack-2-41 136 1126 73.21 2.90
MultiKnapsack-2-48 180 1126 | 811.88 43.36
Nonogram-018-table 576 2 3.14 2.98
Nonogram-035-table 576 2 2.48 2.49
Nonogram-096-table 576 2 5.79 5.73
Nonogram-168-table 400 1 1.20 1.04
Nonogram-177-table 1024 2 2.57 2.69
Nonogram-180-table 1024 2 32.95 34.15
Pb-queen-0974553 1137 39 25.70 3.47
pigeonsPlus-07-05 42 7 17.76 8.76
pigeonsPlus-08-04 40 8 52.36 28.48
pigeonsPlus-09-03 36 9| 23993 143.16
Primes-10-20-3-3 213 784 10.79 0.04
Primes-10-60-3-3 444 784 46.51 659.36
Primes-15-20-2-5 219 2116 | 168.98 0.16
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Table 6.3: CSP attributes and solution times while maintaining AC and BC - Part 11|

CSP n d| TIME,. TIMEg.
Primes-20-40-2-1 241 3574 71.23 0.05
PropStress-0020 293 24 | 1297.90 1.30
qwh-10-57-7_X2 100 5 0.11 0.10
rand-2-23-23-253-131-0 23 23| 673.35 X
rand-2-23-23-253-131-1 23 23| 663.37 X
rand-2-30-15-306-230f-09 30 15 8.51 65.62
rand-2-40-11-414-020-23 40 11 46.38 328.02
rand-2-40-11-414-020-35 40 11 4.67 68.40
rand-5-12-12-200-12442-38 12 12 | 642.24 846.58
rand-5-12-12-200-t95-3 12 12 | 701.10 803.31
rand-5-2X-05¢-15 12 12 | 558.94 1837.32
Renault 101 42 3.87 3.66
Renault-medium-pos 148 20 0.27 0.30
Renault-megane-pos 929 42 3.05 3.53
Renault-mgd 101 42 3.74 3.48
Renault-small 139 16 0.08 0.06
Renault-souffleuse 32 12 0.01 0.02
RenaultMod-09 111 42 | 740.11 1032.59
Sat-flat200-06-dual 2237 4 | 470.44 261.04
Sat-flat200-14-dual 2237 4 1.34 179.40
Sat-flat200-32-dual 2237 4 | 130.75 13.55
Sat-flat200-55-dual 2237 4| 146.12 1147.39
Sat-flat200-65-sum 6911 3| 127.33 117.12
Sat-flat200-67-dual 2237 4| 138.31 688.10
Sat-flat200-80-dual 2237 4 X 1574.29
SchurrLemma-mod-012-9 12 9 6.88 39.40
SchurrLemma-mod-015-9 15 9 9.45 37.19
SchurrLemma-mod-020-9 20 9 11.85 42.86
SchurrLemma-mod-030-9 30 9 17.74 58.30
SchurrLemma-mod-050-9 50 9 33.20 100.52
SchurrLemma-mod-100-9 100 9| 116.89 301.21
Subisomorphism-A-15 180 200 2.61 13.11
Subisomorphism-g07-g39 20 1 0.06 0.05
Subisomorphism-g08-g31 30 100 4.83 7.06
Subisomorphism-g10-g35 41 120 0.05 0.04
Subisomorphism-si2-b09-m200-02 40 200 0.30 0.21
Subisomorphism-si6-b03-m800-07 480 800 1.23 1.43
TravellingSalesman-20-076_X2 61 70 50.54 1407.10
TravellingSalesman-20-142_ X2 61 115 | 1640.18 X
TravellingSalesman-25-003_X2 76 62 | 190.14 X
TravellingSalesman-25-066_X2 76 62 28.76  224.92
TravellingSalesman-4-20-001-a4_ X2 61 52 60.84 448.12
TravellingSalesman-4-20-727-a4_ X2 61 74 | 708.48 X
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Figure 6.5: The time needed to solve the CSPs while maintaining AC divided to
the time spent while maintaining BC

reported by the solver itself. Consequently, n is reported only after the binarization
of the constraints has been completed, possibly by adding more constrained
variables.

Also, we enforce bounds consistency for the first time, before displaying the
maximum domain cardinality d. This means for example that if we have two
constrained variables X, and X,, with X, < X, and D, = {1,2,...,100} and D, =
{25, 26, ..., 50}, the maximum cardinality will not be computed as 100. Bounds
consistency will be enforced first, and D, will be limited to {1,2,...,50}. The
maximum domain cardinality d will be eventually displayed as 50. In this way we
“normalize” redundant domains.

6.5.2 Execution

In order to construct Tables [6.1]and [6.2] with the experimental results, we follow
the above methodology and display n and d for each CSP instance. If n is greater
than d, we display it bold, else d is displayed bold. In theory, when d is greater
than n, we expect that maintaining bounds consistency is more efficient than
maintaining arc consistency.

In the above tables, if the corresponding TIME - for a CSP is bold it means that
itis less than TIMEg.. Otherwise, TIMEg. is bold, which means that maintaining
bounds consistency is more efficient than arc consistency in this CSP.

Using the above methodology, we created two separate solvers, one that
maintains arc consistency and one that maintains bounds consistency. Each of
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them was assigned to solve the First XCSP3 Constraint Mini-Solver Competition
CSPs [32]. Each CSP instance has to be solved within 40 minutes according to
the competition standards. If a solver cannot solve an instance within this time
frame, it is marked with an “X” in the table. Otherwise, the elapsed time in seconds
is written. Please note that only the CSP instances that were solved at least from
one solver are displayed in the table.

We executed the experiments in an Ubuntu Linux 18.04 virtual machine with 8
virtual CPUs and 8 GB of memory.

6.5.3 Visualization

In order to make comparisons more easily, we depicted graphically the ratio
TIME,/TIME versus d/n in Figure[6.5 using the ¢ symbol.

When the AC solver does not produce a solution, we have an undefined TIME ,
denoted as “X” in the table. In the figure, the corresponding point is depicted with
a A symbol. This represents a very high TIME, ./ TIMEg. ratio, which means that
maintaining BC is much more efficient than AC in this case.

On the other hand, when TIME. is “X,” the ratio TIME ./ TIME. is depicted
with a V symbol. This denotes a very low ratio, which means that AC is much
more efficient than BC in this case.

It may be obvious that the above A and V points do not correspond to real
values. They are used in the margins of Figure [6.5/to represent marginal ratios,
as described above.

As the ¢ points in the figure are somehow sparse, the results become more
intuitive if we draw a smooth curve between them. Therefore, the curve in Fig-
ure [6.5/ has been derived by the LOESS method [23| 97] and is representative of
the < points.

In rough lines, LOESS is used to unify scattered points along the plot by
drawing a smooth curve that passes between them. The advantage of this method
is that it does not require a parameter or function of any form to fit a model to the
data. The only input is the data themselves.

In our case, we made LOESS method ignore the marginal A and V points
because they do not depict real values.

6.5.4 Observations

In Figure [6.5)'we compare the times for solving a CSP instance via maintaining
AC and BC. A first conclusion is that BC can be better than AC for many instances.
This is an important observation, as, due to the fact that AC enforces a stronger
consistency level than BC, and both AC and BC have equal worst-case com-
plexities (Lemma [4)), there is the misconception that AC is always better than
BC.

However, the conclusion about the occasional superiority of BC over AC has no
practical use, if we do not know when it happens. We have to find the appropriate
conditions to know a priori if a CSP instance will be solved faster by maintaining
AC or BC.

In theory (Proposition (1) the relation between n and d defines the relation
between the upper limits of TIME, . and TIME;.. To put it simply, the d/n ratio
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affects the TIME, ./ TIME. ratio, and this is evident in practice in Figure : On
average, TIME,./TIME,. < 1ifd/n < 1 and TIME,./TIME,. > 1ifd/n > 1.
This becomes clearer if we observe the smooth curve constructed by the LOESS
method, which represents the “average” of the ¢ points [23].

Of course, there is some deviation between our theoretic expectations and
the observed results. This is due to the fact that in theory we studied the worst
case of complete search trees for both maintaining AC and BC, while in practice
the two methodologies may produce incomplete search trees that are different
between them.

Regarding the A points (that represent the cases when only the maintaining BC
method found a solution while maintaining AC did not find one) they are apparently
more on the right side, i.e. when d/n > 1. On the other hand, the V points are
gathered mostly on the left side of Figure [6.5] This means that for d/n < 1, the
maintaining BC methodology is usually not only less efficient than AC, but it may
produce no solution for a CSP, while AC is able to solve it.

6.6 The new k-bounds-consistency variant

We have shown that, under certain conditions, maintaining bounds consistency
can be more efficient than maintaining arc consistency. What about going one
step further? Can we loosen bounds consistency itself—by enforcing it not to all
arcs but to a subset of them—and produce even more efficient results?

We are going to propose a looser consistency type, which enforces bounds
consistency only to the variables with domain sizes less than or equal to k [74].

6.6.1 Theoretical analysis

Definition 12. The arc/constraint (X, Y) connecting the variables X and Y is k-
bounds-consistent, iff (X, Y) is bounds-consistent or |D,| > k.

Example 19. Let X, Y be constrained variables with the corresponding domains
D, = {5,6,8}and D, = {1,2,3}, and it holds X = Y + 5. The constraint is not 5-
bounds-consistent, because |D,| < 5 and there is not any support in D, for 5 € D,,.
However, we do have 2-bounds-consistency, as |D,| > 2.

Lemma 5. k-bounds-consistency enforcement on an arc (X, Y) requires at most
O(Rd) steps.

Proof. The revision of an arc/constraint includes the check for support values and
the consistency enforcement. To check for the consistency, we need O(2 - |D, |)
steps, as for each one of the two D, bounds, we try to find a support value y € D,.

But we must also consider what happens when a D, bound is found inconsistent.
In this case we should enforce bounds-consistency by removing the inconsistent
bound out of D, and by repeating the above check for the new bound. We may
have O(|D,|) removals.

As a result, the overall revision complexity is O(|D,|)- O(2|D,|) = O(|D,/| - |D ).

Nevertheless, remember that R-bounds-consistency is enforced only when
ID,| < k. As a consequence, k-bounds-consistency has a O(k - d) worst case
Ccost. [
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As Rk grows and approaches infinity, which is as a matter of fact equivalent to
d, R-bounds-consistency becomes evidently identical to bounds-consistency. For
low kR values R-bounds-consistency approximates a simple constraint check.

Maintaining 1-bounds-consistency during search is identical with a plain back-
tracking method, and no constraint propagation is done. In this case 1-bounds-
consistency degenerates into a way to check if a constraint is satisfied: We search
to find a support value for the unique bound/value of X; if no support is found, the
unique value is removed, and an ultimate inconsistency signal is broadcast. This
particular consistency type may also appear in “lazy” propagation schemas, e.g.
in local search contexts [68].

6.6.2 Empirical results

Following the experiments in Section [4.3.1], we enforce our new consistency
level while solving the fourteen real-world datasets of the International Timetabling
Competition (ITC) track for universities [58]. All the source code is freely available.ﬂ
The experiments were conducted on an HP computer with an Intel dual-core
E6750 processor at 2.66 GHz and 2 GB of memory, running Ubuntu Linux 8.04.
In accordance with ITC standards, we have only 334 seconds in this machine in
order to find a solution.

The lightweight consistency proposed seems in theory to ease the burden of
the necessary revisions. But is it competitive in demanding problems such as
real-life course timetabling, in relation to other consistency levels?

Figure displays the corresponding costs of the solutions found for each
one of the fourteen datasets. It is obvious that for each one of them there is a
specific R, for which maintaining k-bounds-consistency methodology gives the
best results. For k = 1, the methodology actually uses no constraint propagation;
it is a plain backtracking method, so the results are poor. On the other hand,
while k approximates infinity, i.e. while R-bounds-consistency approaches plain
bounds-consistency, the results are not so poor, but are apparently worse than
using the k value, which usually lies around 25. We may consider this value
something like a “golden mean” but only for this type of CSP instances.

Conclusively, for very small k values we found low quality solutions, i.e. with
high cost. On the contrary, as R increases above the “golden mean,” the solution
quality remains almost the same.

"http://di.uoca.gr/~pothitos/ictai2012
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Figure 6.6: The objective/cost function value for the solutions found
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7. CONCLUSIONS AND FUTURE DIRECTIONS

Science is the belief in the ignorance of experts.

Richard Feynman

Constraint Programming is quite wide area, and this dissertation contributed
to it both in theoretical and practical level. All the implementations were made
transparent and available to the open source community.

7.1 Unified random and deterministic heuristics

Ouir first contribution in this work was to present a well-founded paradigm to
exploit both stochastic and deterministic heuristics. Empirical evaluations showed
that our hybrid approach can produce better results than fully random or fully
deterministic methodologies [71,, [72].

In order to achieve this, we approached and used heuristics as a confidence
measure. By exploiting these heuristic semantics, we were able to produce a new
efficient search method, namely PoPS, that can outperform other methodologies.
In general, our proposed framework gives the opportunity to exploit “on the fly”
whichever heuristic confidence fluctuations occur.

In the future, it will be challenging to parallelize it, as it supports a whole grid of
strategies, by concurrently invoking PorsSAmPLE with several PieceToCover and
conf arguments.

7.2 Distributed Constraint Programming via MapReduce

Another contribution was to consider MapReduce as a framework that is not
only well-suited for huge databases but also for the huge search spaces that
Constraint Programming explores. We evolved a generic Solver that already
supported the definition of custom CSPs and ad hoc search methods. We made it
capable of (i) sampling the search trees, (ii) recording the search tree splits into
a text file, and (iii) restoring search in a specific search tree part/split. The text
file was supplied as input for MapReduce, whose Mappers were Solver instances
that could restore search in a given search tree split [70].

In the future, the most promising thing to do is to solve optimization CSPs,
which are a fertile ground for even superlinear speedups. In these problems the
goal is not to find one or all the solutions, but to get the best solution, according
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to specific criteria. To achieve this, each mapper-solver can employ the branch
and bound methodology which dynamically adds a new constraint (each time a
solution is found) that the next solution must be better than the one already found.
Additionally, when a new MapReduce round begins, all the mappers-solvers will
know the best solution found in the previous MapReduce round and adapt their
branch and bound strategies accordingly.

Furthermore, we can have superlinear speedups when trying to get just one
solution of a CSP and not all of them.

7.3 Relaxed constraint propagation: Less is more

An important contribution of this work is to give focus on the weaker consistency
levels (bounds consistency — BC) in Constraint Programming and to highlight their
advantages over “stronger” consistency levels (arc consistency — AC). If we take
it for granted that arc and bounds consistency have both equal asymptotic time
complexities, then two questions arise.

1. Why is BC often used in practice in Constraint Programming solvers?

2. When should we prefer BC over AC?

In current bibliography, answers to the first question are scarce and only based
on unpublished empirical observations. In any case, one can answer to the first
guestion by conducting experiments and finding examples where BC is more
efficient than AC. Indeed, in this work, we experimented with a broad range of
official CSPs and found many cases where BC is more efficient in practice.

7.3.1 Predicting the efficiency of relaxed consistency

The second question is more difficult, as it is addressed for every possible ad
hoc CSP. Our approach to answer it included the following steps.

* Introduce the algorithms for arc and bounds consistency enforcement and
prove that they take the same time in the worst case.

* Introduce a basic backtracking search algorithm and the search tree and
search path notions.

* Integrate consistency enforcement algorithms into the backtracking search
method.

» Compute the overall time complexity while descending a search tree path
and find the differentiations between maintaining AC and BC.

» Project the complexity to traverse a search path to the overall search tree
complexity.
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Following this approach, we produced some tight upper limits for AC and BC
time complexities in the context of search methods. We defined a criterion which,
based on the attributes of a CSP, predicts which of the two methodologies is likely
to solve it faster.

This new criterion gives us the freedom to select the consistency level (AC
or BC) just before solving a specific CSP. We are not obliged to use default
consistency levels when we build a Constraint Programming solver anymore. We
are now able to tailor the AC vs. BC selection to the particular parameters of each
CSP and thus make the overall search process more efficient [73].

In the future, this work can be naturally extended to answer the question why
even higher consistency levels than AC are “seldom used in practice” [5]. This is
another paradox, as there are a lot of very important publications for sophisticated
higher consistency levels. Just like in this work, we should develop criteria about
when to use higher consistency levels than AC and not completely ignore them.

Another natural future extension of this work will be to compare the maintenance
of generalized arc and bounds consistencies during search, which are enforced to
non-binary constraint networks. In this work, we considered only binary constraints,
i.e. only constraints between two variables. This was done for the sake of simplicity,
as every constraint involving more than two variables can be converted to binary
constraints [81]. After all, the notion of the arc, e.g. (X,,X,), includes only two
variables.

On the other hand, n-ary constraints with n > 2, i.e. constraints that involve
more than two variables, are quite common in practice and can be exploited to
speed up search. Such constraints are often expressive in the sense that it is more
elegant for example to mention AllDifferent(X,, X,, X;) than X, #X, A X, X5 AX;2X,.

For n-ary constraints, we enforce either generalized arc consistency (GAC)
or generalized bounds consistency. It would be interesting to see if the behavior
of maintaining AC vs. BC during search remains the same for their generalized
variants.

7.3.2 A new relaxed consistency variant

Finally, we introduced k-bounds-consistency, a parameterized bounds con-
sistency variant [74]. Our new kR-bounds-consistency was proved to be more
efficient for small k values. Still, the exact specification of the best k is different
for each different CSP instance. In the future, it would be interesting to automate
the process of finding the “golden mean” k.

Future perspectives also include proposing even looser consistency types
for the individual problems with too many variables, for which only local search
methods seem nowadays efficient [60]. Except for the domain size, are there any
other ways to limit—or augment—the constraint propagation level?

7.3.3 Toward one unified benchmarking

In 1997, Eugene Freuder, a Constraint Programming pioneer, stated that its
“holy grail” is that the user simply states the problem and the computer solves
it [34]. This, obviously, emphasizes on user experience. Today, after two decades
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of theoretical advances, the community still pursuits this “holy grail” [35]. If we
want to contribute toward this direction in the future, we should integrate and test
the existing theory (e.g. about various consistency levels, search methodologies,
etc.) into user-friendly solvers and take the decision to use a common testbed
with emphasis on real-life CSPs over artificial ones with obfuscated modelings.

In this direction, we can employ the MiniZinc language that allows a single
model of a CSP to be solved by multiple different solvers [62]. Furthermore,
the CSP instances of the “MiniZinc Challenge” competition can be used as a
benchmark e.g. to prove the efficiency of a consistency enforcement algorithm [87].

Nevertheless, in our consistency enforcement experiments we preferred to
use CSP instances defined using the XCSP3 format that is more low-level than
MiniZinc [14]. There were two reasons behind this choice.

* Many relevant consistency enforcement papers use the instances of the
XCSP3 library, and we wanted to be as close to the related work as possible.

* There is an XCSP3-core subset of the XCSP3 language [15]. XCSP3-core
contains the most essential constraints, and it is more tailored for competi-
tions and benchmarking than the original XCSP3 and MiniZinc languages.
XCSP3-core language and benchmarks are easier to be adopted by a mini-
solver used in a research paper.

However, there are some XCSP3 drawbacks that should be addressed too.

* As already mentioned, XCSP3 is more low-level than MiniZinc, which means
that it is less user-friendly.

* The default XCSP3 definitions of many CSP instances are obfuscated, as
they use table constraints.

To mitigate the above, toward a unified testbed to benchmark the new and old
consistency algorithms, a “MiniZinc-core” language and competition should be
established.
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