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ABSTRACT

Constraint Programming aims at the easy declaration and fast resolution of Constraint

Satisfaction Problems (CSPs) like course scheduling, radio link frequency assignment,

etc. To solve the problems, Constraint Programming is based on

• search methods and

• constraint propagation.

This dissertation contributes on both. Specifically:

1. We develop novel search methods that are based on new heuristics. These new

heuristics implement the gradual randomization of deterministic heuristics. We

create hybrid heuristics that exploit the advantages of both deterministic and random

heuristics.

2. We demonstrate how the MapReduce framework can be used for speeding up and

distributing the search of a CSP solution to all the available solvers-workers.

3. We highlight the advantages of relaxed constraint propagation levels like bounds

consistency in comparison to higher levels like arc consistency. We propose new

relaxed constraint propagation levels, and we compare their performance to higher

propagation levels, both in theory and practice. We answer the question about when

it is worth to employ relaxed constraint propagation levels.

Our contributions were tested using mostly CSPs that occur in the real world and a wide

range of CSPs included in official Constraint Programming solvers competitions. We used

Naxos Solver as a practical open-source Constraint Programming solver to conduct our

experiments.

SUBJECT AREA: Artificial Intelligence, Constraint Satisfaction

KEYWORDS: search, heuristics, randomization, MapReduce, constraint propagation,

bounds consistency, maintaining arc consistency





ΠΕΡΙΛΗΨΗ

Ο Προγραμματισμός με Περιορισμούς (Constraint Programming) αποσκοπεί στην

εύκολη διατύπωση και γρήγορη επίλυση των λεγόμενων Προβλημάτων Ικανοποίησης

Περιορισμών (Constraint Satisfaction Problems – CSPs) όπως η κατάστρωση ωρολογίων

προγραμμάτων, η ανάθεση συχνοτήτων σε ραδιοφωνικούς σταθμούς χωρίς παρεμβολές

μεταξύ τους κ.ά. Για την επίλυση των προβλημάτων, ο Προγραμματισμός με Περιορισμούς

βασίζεται

• στις μεθόδους αναζήτησης (search methods) και

• στη διάδοση περιορισμών (constraint propagation).

Η διατριβή αυτή συνεισφέρει και στους δύο αυτούς πυλώνες. Πιο συγκεκριμένα:

1. Αναπτύσσουμε καινούργιες μεθόδους αναζήτησης που βασίζονται σε καινοτόμους

ευρετικούς κανόνες. Οι κανόνες αυτοί υλοποιούν τη βαθμιαία τυχαιοποίηση των

ντετερμινιστικών ευρετικών κανόνων. Δημιουργούμε ένα υβρίδιο με στόχο την εκ-

μετάλλευση των πλεονεκτημάτων τόσο των ντετερμινιστικών όσο και των τυχαίων

ευρετικών κανόνων.

2. Αξιοποιούμε το πλαίσιο MapReduce προκειμένου να επιταχύνουμε και να κατανεί-

μουμε την αναζήτηση λύσης ενός Προβλήματος Ικανοποίησης Περιορισμών σε όλους

τους επιλυτές-εργάτες που τυχαίνει να έχουμε στη διάθεσή μας.

3. Αναδεικνύουμε τα πλεονεκτήματα των χαλαρών επιπέδων διάδοσης περιορισμών,

όπως η συνέπεια ορίων (bounds consistency) έναντι υψηλότερων επιπέδων όπως

η συνέπεια ακμών (arc consistency). Προτείνουμε καινούργιες μορφές χαλαρών

επιπέδων διάδοσης περιορισμών και συγκρίνουμε την απόδοσή τους σε σχέση με

τα υψηλότερα επίπεδα διάδοσης περιορισμών, τόσο θεωρητικά όσο και πρακτικά.

Απαντάμε στην ερώτηση για το πότε συμφέρει να χρησιμοποιούμε χαλαρά επίπεδα

διάδοσης περιορισμών.

Οι συνεισφορές μας δοκιμάστηκαν ως επί το πλείστον σε Προβλήματα Ικανοποίησης

Περιορισμών από τον πραγματικό κόσμο, αλλά και σε μια ευρύτερη γκάμα προβλημάτων

που χρησιμοποιούνται σε επίσημους διαγωνισμούς επιλυτών Προγραμματισμού με Πε-

ριορισμούς. Ένας τέτοιος πρακτικός επιλυτής ανοικτού κώδικα είναι ο Naxos Solver που

χρησιμοποιήσαμε ως το πεδίο εφαρμογής των πειραμάτων.

ΘΕΜΑΤΙΚΗ ΠΕΡΙΟΧΗ: Τεχνητή Νοημοσύνη, Ικανοποίηση Περιορισμών

ΛΕΞΕΙΣ ΚΛΕΙΔΙΑ: αναζήτηση, ευρετικοί κανόνες, τυχαιοποίηση, MapReduce, διάδοση

περιορισμών, συνέπεια ορίων, διατήρηση συνέπειας ακμών
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ΣΥΝΟΠΤΙΚΗ ΠΑΡΟΥΣΙΑΣΗ

Ο στόχος της διατριβής είναι να συνεισφέρει στην έρευνα πάνω στον Προγραμ-

ματισμό με Περιορισμούς (Constraint Programming) που είναι μία περιοχή της

Τεχνητής Νοημοσύνης. Στο πλαίσιο αυτής της εργασίας, παρήχθησαν καινοτόμα

θεωρητικά αποτελέσματα τα οποία είχαν ως πρακτική συνέπεια την επιτάχυνση

της επίλυσης των Προβλημάτων Ικανοποίησης Περιορισμών.

Προβλήματα Ικανοποίησης Περιορισμών

Ένα παράδειγμα Προβλήματος Ικανοποίησης Περιορισμών (Constraint Satis-

faction Problem – CSP) από τον πραγματικό κόσμο που επιλύεται μέσω Προγραμ-

ματισμού με Περιορισμούς, είναι η κατάστρωση ωρολογίων προγραμμάτων για

εκπαιδευτικά ιδρύματα (course scheduling). Σε ένα τέτοιο πρόβλημα υπάρχουν

αυστηροί περιορισμοί όπως το να μην διδάσκονται ταυτόχρονα δύο μαθήματα στην

ίδια αίθουσα και να μην διδάσκονται ταυτόχρονα δύο μαθήματα του ίδιου έτους.

Λιγότερο αυστηροί περιορισμοί αφορούν στη μη ύπαρξη κενών στα προσωπικά

ωρολόγια προγράμματα φοιτητών και καθηγητών.

Άλλο παράδειγμα Προβλήματος Ικανοποίησης Περιορισμών είναι η κατανομή

των ραδιοφωνικών συχνοτήτων σε μία χώρα, έτσι ώστε ο ένας ραδιοφωνικός σταθ-

μός να μην κάνει παρεμβολές στον άλλον (radio link frequency assignment). Ένας

αυστηρός περιορισμός σε αυτήν την περίπτωση είναι ότι δύο σταθμοί που εκπέ-

μπουν στην ίδια περιοχή οφείλουν να χρησιμοποιούν συχνότητες που διαφέρουν

τουλάχιστον κατά ένα συγκεκριμένο αριθμό μεγακύκλων.

Οι συνεισφορές της διατριβής

Όπως θα παρουσιαστεί διεξοδικότερα παρακάτω, στον Προγραμματισμό με

Περιορισμούς επιλύουμε τα Προβλήματα Ικανοποίησης Περιορισμών εναλλάσσο-

ντας

• μία μέθοδο αναζήτησης (search method) και

• μία διαδικασία διάδοσης περιορισμών (constraint propagation).

Η συνεισφορά της διατριβής αφορά και στους δύο αυτούς άξονες και συγκεκριμένα

στη

1. βαθμιαία τυχαιοποίηση ευρετικών κανόνων αναζήτησης [P2,P3]

2. κατανομή της αναζήτησης μέσω του πλαισίου MapReduce [P4]

3. ανάδειξη των πλεονεκτημάτων των χαλαρών διαδικασιών διάδοσης περιορι-

σμών [P1,P5]



Πλαίσιο παρατηρήσεων και πειραμάτων

Η πρόκληση στα Προβλήματα Ικανοποίησης Περιορισμών έγκειται στη μεγάλη

ποικιλία τους και στις διαφορές της δυσκολίας επίλυσής τους. Αναπόφευκτα, κά-

ποιος που χρησιμοποιεί τον Προγραμματισμό με Περιορισμούς, δεν είναι δυνατόν

να ασχοληθεί με όλα τα είδη προβλημάτων. Επιπλέον, η επινόηση και μελέτη

ακόμα και τεχνητών Προβλημάτων Ικανοποίησης Περιορισμών είναι σύνηθες

φαινόμενο στη βιβλιογραφία.

Τίθεται λοιπόν το ερώτημα: σε ποια προβλήματα οφείλει να δοκιμάσει τη μεθο-

δολογία που προτείνει ο ερευνητής ώστε να είναι όσο το δυνατόν αμερόληπτος;

Είναι θεμιτό να ασχολείται με τεχνητά προβλήματα; Ακόμα και αν συμφωνήσουμε

στην εξέταση ενός συγκεκριμένου προβλήματος, με ποιο τρόπο διατυπώνεται αυτό

σε ένα σύστημα Προγραμματισμού με Περιορισμούς; Σημειώνεται ότι θεμελιώδης

στόχος του Προγραμματισμού με Περιορισμούς είναι η ευκολία διατύπωσης.

Κατά τη διεξαγωγή της έρευνας της παρούσης διατριβής, επενδύσαμε στην

επίλυση απαιτητικών προβλημάτων από τον πραγματικό κόσμο, όπως η κατά-

στρωση ωρολογίων προγραμμάτων για εκπαιδευτικά ιδρύματα. Ασχοληθήκαμε

όμως και με ευρύτερα προβλήματα, τεχνητά και μη, όπως αυτά που χρησιμο-

ποιούνται σε επίσημους διαγωνισμούς ταχύτητας συστημάτων Προγραμματισμού

με Περιορισμούς. Και όλα αυτά επεκτείνοντας ένα σύστημα Προγραμματισμού

με Περιορισμούς ανοικτού κώδικα Naxos Solver1 που έχουμε δημιουργήσει οι

ίδιοι και χρησιμοποιείται ευρέως λόγω της ευκολίας διατύπωσης Προβλημάτων

Ικανοποίησης Περιορισμών που παρέχει.

1 Τυχαίοι και ντετερμινιστικοί ευρετικοί κανόνες: Γεφυρώνοντας

το χάσμα

Ένα Πρόβλημα Ικανοποίησης Περιορισμών αποτελείται από ένα σύνολο μετα-

βλητών (variables) και ένα σύνολο περιορισμών (constraints) που τις συνδέουν.

Κάθε μεταβλητή παίρνει τιμή από ένα πεπερασμένο σύνολο ακεραίων που ονομά-

ζεται πεδίο τιμών της (finite domain). Ένας συνδυασμός τιμών των μεταβλητών

που δεν παραβιάζει κανέναν περιορισμό είναι λύση του προβλήματος. Επομένως,

για να βρούμε μία λύση, αρκεί να εξετάσουμε όλους τους δυνατούς συνδυασμούς

τιμών των μεταβλητών του προβλήματος.

1.1 Η αναγκαιότητα των ευρετικών κανόνων

Ωστόσο, καθώς αυξάνονται οι μεταβλητές του προβλήματος, οι συνδυασμοί

που πρέπει να εξετάσουμε αυξάνονται εκθετικά. Επειδή είναι απαγορευτικός ο

αριθμός των υποψηφίων λύσεων για να τις εξετάσουμε όλες, χρειαζόμαστε τους

λεγόμενους ευρετικούς κανόνες (heuristics) προκειμένου να εξετάσουμε πρώτα

τις περισσότερο «υποσχόμενες» υποψήφιες λύσεις.

Αν υπήρχε τέλειος ευρετικός κανόνας, τότε θα καταργούταν η ανάγκη να

χρησιμοποιήσουμε έναν αλγόριθμο αναζήτησης. Θα δίναμε όλες τις υποψήφιες

1https://github.com/pothitos/naxos

https://github.com/pothitos/naxos


λύσεις ως είσοδο στον ευρετικό κανόνα και εκείνος θα μας επέστρεφε απευθείας

τη λύση. Όμως τέλειος ευρετικός κανόνας δεν υπάρχει.

Αυτό σημαίνει ότι, σε μία ακραία αλλά όχι σπάνια περίπτωση, ένας ευρετικός

κανόνας μπορεί να δίνει προτεραιότητα σε κακές υποψήφιες λύσεις, καθυστε-

ρώντας έτσι την αναζήτηση. Αυτός είναι ο λόγος για τον οποίο πολλές φορές η

μέθοδος αναζήτησης επιλέγει στην τύχη την επόμενη υποψήφια λύση, αντί να

χρησιμοποιήσει κάποιον ντετερμινιστικό ευρετικό κανόνα.

1.2 Βαθμιαία τυχαιοποίηση ευρετικών κανόνων

Ανάμεσα στα δύο άκρα των ντετερμινιστικών και τυχαίων ευρετικών κανόνων,

στο πλαίσιο αυτής της διατριβής δημιουργήθηκε για πρώτη φορά η δυνατότητα

βαθμιαίας τυχαιοποίησης ενός ντετερμινιστικού ευρετικού κανόνα. Κατασκευά-

στηκαν υβριδικοί ευρετικοί κανόνες που δοκιμάστηκαν σε δύσκολα προβλήματα

ικανοποίησης περιορισμών από τον πραγματικό κόσμο.

Επιπλέον, δημιουργήθηκε μία καινούργια μέθοδος αναζήτησης PoPS (Piece

of Pie Search) η οποία χρησιμοποιεί αποτελεσματικά τους παραπάνω υβριδικούς

ευρετικούς κανόνες. Όσο λιγότερες αναθέσεις τιμών έχουν πραγματοποιηθεί, τόσο

πιο τυχαίοι είναι οι ευρετικοί κανόνες που χρησιμοποιούνται. Όσο περισσότερες

αναθέσεις έχουν πραγματοποιηθεί, τόσο περισσότερο ντετερμινιστικοί ευρετικοί

κανόνες χρησιμοποιούνται [P2,P3].

Μοιάζει με την περίπτωση που ξεκινάει μια παρτίδα σκάκι. Αρχικά, έχουμε

περισσότερες επιλογές και μπορούμε να επιλέξουμε τυχαία μέσα από ένα μεγαλύ-

τερο σύνολο κινήσεων. Όσο όμως ο χρόνος του παιχνιδιού κυλάει, η στρατηγική

μας γίνεται ολοένα και περισσότερο ντετερμινιστική.

2 Ενσωμάτωση του MapReduce στον Προγραμματισμό με Πε-

ριορισμούς

Η πρόκληση των ημερών μας δεν είναι πάντοτε να περιορίζουμε έναν αλ-

γόριθμο ώστε να απαιτεί λιγότερους υπολογιστικούς πόρους. Το ζητούμενο

πολλές φορές πλέον είναι πώς θα αξιοποιήσουμε έναν «στρατό» από φτηνούς

υπολογιστές-εργάτες που τίθενται εύκολα στις υπηρεσίες μας.

Για την περίπτωση του Προγραμματισμού με Περιορισμούς, ας φανταστούμε

ότι έχουμε στη διάθεσή μας έναν μεγάλο αριθμό υπολογιστών στο νέφος (cloud)

της Google ή της Amazon. Πώς μπορούμε να τους εκμεταλλευτούμε για να

επιλύσουμε γρηγορότερα ένα Πρόβλημα Ικανοποίησης Περιορισμών;

Το MapReduce είναι ένα γενικότερο πλαίσιο (framework) για την κατανομή

και μαζική επεξεργασία πολλών δεδομένων (big data) σε έναν αυθαίρετα μεγάλο

αριθμό υπολογιστών. Χρησιμοποιήθηκε αρχικά για την ευρετηριοποίηση ολόκλη-

ρου του Διαδικτύου. Με απλά λόγια δηλαδή, το MapReduce είναι η βάση της

μηχανής αναζήτησης Google. Από εκεί και πέρα, το πλαίσιο MapReduce έχει

χρησιμοποιηθεί και σε πλείστες άλλες εφαρμογές όπως η αυτόματη ομαδοποίηση

εγγράφων, η μηχανική μάθηση και η αυτόματη μετάφραση.

Μία από τις καινοτομίες της διατριβής αφορά στην εφαρμογή του MapReduce

πάνω στον Προγραμματισμό με Περιορισμούς. Πιο συγκεκριμένα, το σύνολο των

υποψηφίων λύσεων ενός προβλήματος κωδικοποιείται και κατακερματίζεται σε



κομμάτια. Στη συνέχεια τα κομμάτια αυτά αποστέλλονται στους επιλυτές-εργάτες

(mappers) για να αναζητήσουν αν μέσα σε αυτά κρύβεται κάποια πραγματική

λύση του προβλήματος. Με άλλα λόγια, διαιρείται το δένδρο αναζήτησης σε πολλά

κομμάτια τα οποία κατανέμονται αυτόματα μέσω του MapReduce σε έναν αριθμό

εργατών που τα εξερευνούν ταυτόχρονα.

Επειδή το MapReduce δέχεται ως είσοδο μόνο αρχεία κειμένου, στη διατριβή

προτείνεται ένας γρήγορος τρόπος κωδικοποίησης των κομματιών του δένδρου

αναζήτησης και η αποθήκευσή τους σε ένα μεγάλο αρχείο κειμένου. Ο στόχος είναι

να κομματιάσουμε το δένδρο σε όσο το δυνατόν πιο ισομεγέθη μέρη, ούτως ώστε

να πετύχουμε δίκαιη κατανομή του φόρτου εργασίας στους επιλυτές-mappers.

Είναι ασύμφορο να διατρέξουμε όλο το δένδρο αναζήτησης προκειμένου να

δούμε τη δομή και τη μορφή του και να το κομματιάσουμε σε ίσα μέρη. Γι’ αυτό

το λόγο, επισκεπτόμαστε δειγματοληπτικά μόνο κάποιους από τους κόμβους του

δένδρου, για να σκιαγραφηθεί και να υπολογιστεί η δομή του, δίχως να χρειαστεί

να τα επισκεφθούμε όλους τους κόμβους του εκ των προτέρων [P4].

3 Τα πλεονεκτήματα της χαλαρής διάδοσης περιορισμών

Μέχρι τώρα εστιάσαμε στις μεθόδους αναζήτησης λύσεων για τα Προβλήματα

Ικανοποίησης Περιορισμών και το πώς μπορούν να επιταχυνθούν και να κατανε-

μηθούν. Στα πραγματικά συστήματα Προγραμματισμού με Περιορισμούς όμως, η

κάθε μέθοδος αναζήτησης εναλλάσσεται με τη λεγόμενη διάδοση περιορισμών

(constraint propagation). Οπότε, είναι εξίσου σημαντικό να ασχοληθεί κανείς και

με αυτήν.

3.1 Μέθοδοι αναζήτησης

Μία συστηματική μέθοδος αναζήτησης (search method) επιλύει βήμα βήμα

ένα Πρόβλημα Ικανοποίησης Περιορισμών. Αρχικά, αναθέτει μία τιμή στην πρώτη

μεταβλητή του προβλήματος από το πεδίο τιμών της. Έπειτα, αναθέτει στη δεύτερη

μεταβλητή του προβλήματος μία τιμή από το πεδίο τιμών της. Μετά ανατίθεται

τιμή στην τρίτη μεταβλητή κ.ο.κ.

Αν μετά από κάποια ανάθεση παραβιάζεται οποιοσδήποτε περιορισμός, δεν

έχει νόημα να διατηρήσουμε αυτή την ανάθεση και να προχωρήσουμε, άσκοπα,

στην επόμενη ανάθεση. Αυτό που πρέπει να κάνουμε σε αυτή την περίπτωση,

είναι να αναιρέσουμε την «προβληματική» ανάθεση και να δοκιμάσουμε κάποια

εναλλακτική.

3.2 Διάδοση περιορισμών

Η διάδοση περιορισμών εξυπηρετεί το να γλιτώνουμε άσκοπες αναθέσεις

τιμών σε μεταβλητές. Αυτό δεν επιτυγχάνεται με το να ελέγχουμε απλά (όπως

στις κλασικές μεθόδους αναζήτησης) αν οι υπάρχουσες αναθέσεις παραβιάζουν

κάποιον περιορισμό. Η διάδοση περιορισμών αποσκοπεί επιπλέον στο να απο-

μακρύνει από τα πεδία τιμών των υπολοίπων μεταβλητών (στις οποίες δεν έχει

ανατεθεί ακόμα τιμή) τιμές οι οποίες είναι ασυνεπείς.



Με άλλα λόγια, η διάδοση περιορισμών δεν εστιάζει μόνο στις υπάρχουσες

αναθέσεις, αλλά προσπαθεί να αφαιρέσει από τα πεδία τιμών όσες περισσότερες

τιμές δεν μπορούν να συμμετέχουν σε μελλοντικές αναθέσεις. Σε γενικές γραμμές,

όσες περισσότερες ασυνεπείς (inconsistent – nogood) τιμές αφαιρούνται από τα

πεδία τιμών, τόσο υψηλότερο επίπεδο διάδοσης περιορισμών λέμε ότι έχουμε.

3.3 Πόση διάδοση περιορισμών;

Εύλογα θα μπορούσε κανείς να ισχυριστεί λοιπόν ότι όσο περισσότερη διάδοση

περιορισμών έχουμε, τόσο περισσότερο θα βοηθηθούν οι μέθοδοι αναζήτησης

και θα κάνουν λιγότερες άσκοπες αναθέσεις τιμών. Αυξάνοντας όμως το επίπεδο

διάδοσης περιορισμών, αυξάνεται αναπόφευκτα και ο χρόνος που αυτή δαπανά.

Οι σχετικές εργασίες στην τρέχουσα βιβλιογραφία εστιάζουν στην επινόηση

υψηλών επιπέδων διάδοσης περιορισμών (higher-level consistencies). Το ζητού-

μενο όμως δεν είναι να μετακυλήσουμε το κόστος της μεθόδου αναζήτησης στη

διάδοση περιορισμών, αλλά να μειώσουμε το χρόνο που απαιτείται αθροιστικά

για τη λύση ενός Προβλήματος Ικανοποίησης Περιορισμών.

3.4 Από τη θεωρία στην πράξη

Αυτό που είναι άξιο απορίας –και αποτελεί αντικείμενο της έρευνας αυτής της

διατριβής– είναι γιατί ενώ υπάρχουν πάρα πολλές σημαντικές εργασίες σχετικές

με τα υψηλά επίπεδα διάδοσης περιορισμών, στις ίδιες εργασίες αυτές πλέον

ομολογείται ότι σπάνια χρησιμοποιούνται στην πράξη. Εν τέλει, ποια θα μπορούσε

να είναι μια πρακτική μορφή διάδοσης περιορισμών;

Μια απλή αλλά όχι απλοϊκή απάντηση είναι ότι πρακτική μορφή διάδοσης περιο-

ρισμών είναι αυτή που χρησιμοποιείται σε πρακτικά συστήματα Προγραμματισμού

με Περιορισμούς. Με τη σειρά του, ένα πρακτικό σύστημα Προγραμματισμού με

Περιορισμούς είναι εκείνο που

1. παρέχει ευκολία διατύπωσης προβλημάτων και έτσι χρησιμοποιείται από

έναν ικανό αριθμό προγραμματιστών-χρηστών και

2. δύναται να επιλύσει σε ικανοποιητικούς χρόνους ένα ευρύ φάσμα Προ-

βλημάτων Ικανοποίησης Περιορισμών: από απλές σπαζοκεφαλιές όπως η

τοποθέτηση οκτώ βασιλισσών σε μια σκακιέρα χωρίς να απειλούνται μεταξύ

τους, μέχρι την κατάστρωση του ωρολογίου προγράμματος του Τμήματος

Πληροφορικής και Τηλεπικοινωνιών.

Ο Naxos Solver είναι μια τέτοια βιβλιοθήκη Προγραμματισμού με Περιορισμούς

και χρησιμοποιήθηκε ως το πεδίο εφαρμογής των πειραμάτων της διατριβής.

Για να κρίνουμε αν ένα επίπεδο διάδοσης περιορισμών είναι πρακτικό, χρειά-

ζεται, εκτός από το να βρούμε ένα πρακτικό σύστημα Προγραμματισμού με Πε-

ριορισμούς, να αποφασίσουμε ποια Προβλήματα Ικανοποίησης Περιορισμών θα

επιλύσουμε. Σε αυτή τη διατριβή, για να υπάρξει όσο το δυνατόν περισσότερη αμε-

ροληψία, χρησιμοποιήθηκε ένα ευρύ φάσμα προβλημάτων, από τον πραγματικό

κόσμο αλλά και τεχνητών, από τον πρώτο διεθνή διαγωνισμό μικρών επιλυτών



XCSP3.2 Εξάλλου, οι περισσότερες εργασίες σε αυτή την ερευνητική περιοχή

χρησιμοποιούν μέρος αυτών των προβλημάτων για πειραματικές μετρήσεις.

3.5 Τα πλεονεκτήματα της χαλαρής διάδοσης περιορισμών

Υπό το πρίσμα του γενικευμένου πρακτικού πειραματικού πλαισίου αυτής της

εργασίας καταγράφηκαν εκτενείς παρατηρήσεις αναφορικά με την απόδοση διαφό-

ρων επιπέδων διάδοσης περιορισμών, όπως η συνέπεια ακμών (arc consistency),

η συνέπεια ορίων (bounds consistency) και μία καινούργια μορφή συνέπειας ορίων

για μεταβλητές με μέγεθος πεδίου τιμών μικρότερο από 𝑘 (𝑘 bounds consistency)
που προτείνεται στη διατριβή [P5].

Γίνεται για πρώτη φορά καταγραφή των περιπτώσεων στις οποίες η διατή-

ρηση της συνέπειας ορίων (ενός χαλαρού επιπέδου διάδοσης περιορισμών) κάνει

γρηγορότερη την αναζήτηση από ό,τι η διατήρηση συνέπειας ακμών (ενός υψη-

λότερου επιπέδου διάδοσης περιορισμών). Αυτή η παρατήρηση από μόνη της

είναι σημαντική, επειδή υπάρχει η κοινή πεποίθηση ότι τα υψηλότερα επίπεδα

διάδοσης περιορισμών είναι πάντοτε πιο αποτελεσματικά.

Πέρα από την καταγραφή εκτενών παρατηρήσεων, η διατριβή επεξηγεί θε-

ωρητικά το λόγο που κάποια Προβλήματα Ικανοποίησης Περιορισμών λύνονται

αποδοτικότερα μέσω της διατήρησης συνέπειας ορίων σε σχέση με τη διατήρηση

συνέπειας ακμών. Παρουσιάζονται οι επιμέρους υπολογιστικές πολυπλοκότητες

και προτείνεται ένα κριτήριο για να επιλέγουμε το καλύτερο επίπεδο διάδοσης

περιορισμών για το κάθε Πρόβλημα Ικανοποίησης Περιορισμών πριν αρχίσουμε

να το επιλύουμε [P1].

Επίλογος

«Ο χρήστης απλά διατυπώνει το πρόβλημα και ο επιλυτής βρίσκει τη λύση.»

Αυτό είναι το σύνθημα του επιστημονικού τομέα του Προγραμματισμού με Πε-

ριορισμούς και αυτόν τον στόχο επιχειρεί να θεραπεύσει η εν λόγω διατριβή:

την καλύτερη εμπειρία του χρήστη μέσω της γρηγορότερης επίλυσης καθημε-

ρινών Προβλημάτων Ικανοποίησης Περιορισμών. Η συνεισφορά της διατριβής

συνοψίζεται

1. στον συνδυασμό τυχαίων και ντετερμινιστικών ευρετικών κανόνων για την

επιτάχυνση της αναζήτησης λύσεων [P2,P3],

2. στην κατανομή του δένδρου αναζήτησης σε πολλούς υπολογιστές-εργάτες

με την αρχιτεκτονική MapReduce [P4], καθώς και

3. στην πειραματική αλλά και θεωρητική τεκμηρίωση των πλεονεκτημάτων που

δύναται να προσφέρει η χαλάρωση της διάδοσης περιορισμών [P1,P5].

2http://www.cril.univ-artois.fr/XCSP17

http://www.cril.univ-artois.fr/XCSP17
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1. INTRODUCTION

None are more hopelessly enslaved than those who falsely believe

they are free.

Johann Wolfgang von Goethe

With this quote, Goethe implies that we are all under strict constraints; they are

an integral part of our lives, even when we do not admit it.

Therefore, a good approach to tackle any problem is to explicitly describe its

constraints and search for a solution that does not violate them.

1.1 What is Constraint Programming?

Here Constraint Programming comes into the picture. Its motto is “the user

simply states the problem and the computer solves it” [34]. This proposition implies

that

• the “user” is required to provide only a bare minimum of the description of a

problem, i.e. only the constraints should be defined, and

• the rest (solution search process) is undertaken by the machine, i.e. solver.

There are several variations of the solution search processes under the Constraint

Programming umbrella. In all cases, however, we describe and formalize every

problem as a Constraint Satisfaction Problem (CSP). A formal description of a

CSP will follow in the next chapter.

Conclusively, Constraint Programming is the set of all the methodologies that

can solve arbitrary Constraint Satisfaction Problems (CSPs).

The description of any CSP is a minimal definition of what the problem is and

does not contain information on how to solve it. Normally, a CSP has a very

large number of candidate solutions, and a Constraint Programming methodology

should be able to identify the feasible solutions out of them.

Constraint Programming allows the easy and declarative statement of a CSP

and provides an “armory” of several generic search methods that can be used

to solve it. Constraint Programming has been applied in scheduling [58], radio

frequency assignment [19], Bioinformatics problems [6, 69], etc.
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Figure 1.1: Harold Cohen, 040501, print

1.2 How Constraint Programming relates to AI?

Artificial Intelligence (AI) is a prestigious Computer Science area that changes

the world. Distinguished AI applications include self-driving cars, search engines,

medical diagnosis, image recognition, even automatic drawing of paintings such

as the ones illustrated in Fig. 1 and 1.1.

Computer vision is a discipline that traditionally belongs to AI. In 1975, David

Waltz introduced constraint propagation, the core of Constraint Programming, to

create a three-dimensional view of an object given a two-dimensional image [92].

Two years later, Alan Mackworth published in the journal of Artificial Intelligence

the evolution of this constraint propagation algorithm which is with variations still

the heart of most Constraint Programming solvers [55].

Constraint Programming also adopts search methods used in AI to solve

Constraint Satisfaction Problems. A series of AI methods like depth-first search

(DFS), limited discrepancy search (LDS), etc. have been successfully employed

in the Constraint Programming world, during the CSP solving phase. Furthermore,

Machine Learning (ML) is constantly gaining ground in the context of Constraint

Programming [66].

AI is only one of the areas that have contributed to Constraint Programming

so far. Integer Programming and Linear Programming that belong to Operations

Research, another Computer Science discipline, have also influenced Constraint

Programming.
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1.3 How Constraint Programming relates to programming?

When one hears the term “Constraint Programming” for the first time, they often

imagine that it is something like a common programming language. Nevertheless,

the word “programming” here has a broader meaning.

Historically, Constraint Programming was implemented for the first time using

Logic Programming. Thus, only the “Constraint Logic Programming” term initially

existed.

When different implementations (imperative languages) came into the picture,

the generalized term “Constraint Programming” was introduced.

Constraint Programming should not be mistaken for a tool to describe the steps

toward solving a problem. Constraint Programming is all about describing the

constraints that a solution should satisfy. Searching for a solution is done behind

the scenes.

Constraint Programming

thesis contributions

Search
Combination of random and

deterministic heuristics

PoPS search method

Distribution Integrating with MapReduce

Propagation
Bounds Consistency benefits

A new Bounds Consistency variant

Upgrade Now Constraint Programming thesi… Search

4
Share

Figure 1.2: Our contributions

1.4 Our contributions

In programming languages, the statement of an algorithm is followed by com-

pilation/interpretation and execution. In Constraint Programming, the statement of

the constraints is followed by independent methodologies that solve the problem.

This dissertation aims to make the solving process more efficient. Figure 1.2

summarizes our contributions in this direction.

The next Chapter 2 contains the preliminaries needed to understand our

contributions in the rest of the chapters. Constraint Satisfaction Problems are

formally defined along with a framework of search methods that solve them by

employing heuristics. Constraint propagation, a basic element of Constraint

Satisfaction, is introduced.

Chapter 3 goes through the papers that are relevant to our contributions and

presents MapReduce.

Chapter 4 illustrates our first contribution [71, 72]. We study two distinct

categories of heuristics, deterministic and random, and we make the most out of
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them by smoothly combining them. We create new hybrid heuristics and a new

search method based on them.

In Chapter 5, we integrate Constraint Programming into the state-of-the-art

distributed MapReduce framework [70]. We exploit MapReduce scalability to

solve large CSP instances.

Finally, in Chapter 6, we highlight the advantages of relaxed constraint propa-

gation methodologies when used in conjunction with search methods to validate

constraints and speed up search [73]. This last contribution attempts to contradict

the “conventional wisdom” which implies that arc consistency or even higher con-

sistency levels are always better than bounds consistency. We propose a new

relaxed consistency level and a criterion to decide a priori when to enforce relaxed

consistency instead of higher consistency levels [74].
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2. CONSTRAINT SATISFACTION PRELIMINARIES

You see this risk time and again in deeply theoretical communities

where they just solve problems for their own amusement and pretend

that what they are doing has some utility. I should say, obviously, that

I have been as guilty as the next person of doing this.

Jeffrey Ullman

Hopefully, Prof. Ullman was not thinking of Constraint Satisfaction Problems when

stating the above; at least the nonartificial ones…

2.1 Constraint Satisfaction Problems

Constraint Programming (CP) aims at solving Constraint Satisfaction Problems

(CSPs) in a transparent way: the user simply states the problem and the computer

solves it [34]. The consequence of this “motto” is that the solver should decide

automatically on its own which algorithm will solve a given CSP without human

intervention; the role of the user is limited just to define the CSP.

This elegant separation of the user experience and the internal solving process

is what makes Constraint Programming an intelligent paradigm, and this is the

motivation behind this work. Every single CSP can be stated using commonplace

formalizations [83, 88].

Definition 1. A Constraint Satisfaction Problem (CSP) consists of

• a set of constrained variables X = {𝑋1, 𝑋2, … , 𝑋𝑛},

• the corresponding set of domains D = {𝐷1, 𝐷2, … , 𝐷𝑛} which are finite sets
(of integer values in this work) and

• the set of constraints between the variables C = {𝐶1, 𝐶2, … , 𝐶𝑒}. Each con-
straint is defined as 𝐶𝑖 = (𝑆𝑖, 𝑅𝑖).

– 𝑆𝑖 is the subset of X containing the variables affected by the constraint.

– 𝑅𝑖 contains all the valid combinations of the values of the domains of the
variables in 𝑆𝑖. Formally, 𝑅𝑖 ⊆ 𝐷𝑖1 × 𝐷𝑖2 × ⋯ × 𝐷𝑖𝑘, with 𝑋𝑖1, 𝑋𝑖2, … , 𝑋𝑖𝑘 ∈ 𝑆𝑖
and 𝑖1 < 𝑖2 < ⋯ < 𝑖𝑘.
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Figure 2.1: A “mind map” with Constraint Programming preliminaries
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For the sake of readability, in this work, 𝐷𝑋 also denotes the domain of the

constrained variable 𝑋. Therefore, the domain of 𝑋1 is denoted as 𝐷1 and as 𝐷𝑋1
too; these two are equivalent.

If we assign a value to every variable, and the assignments are valid with

respect to every constraint, then the assignment is a solution.

2.1.1 Variants

The above definition is very generic, thus many CSP categories-variants have

been introduced so far depending on their type of domains and constraints.

Continuous vs. finite domains

There are CSPs where the domains are continuous sets of real numbers. For

example, a variable can be assigned a decimal number, e.g. 0.25 or 0.7, out of
[0, 1]. Nevertheless, in this work we study only CSPs that are described using
finite sets of integers.

Unary constraints

We do not also refer to unary constraints in this work, due to their triviality. A

unary constraint applies onto a single variable. The initial domain of each variable

should be shrunk to include only the values permitted by the corresponding unary

constraint. This action can be performed as a single preprocessing step, before

proceeding to actually solve a CSP.

Binary constraints

Each binary constraint of a CSP affects exactly two variables. A binary CSP is

a CSP containing only binary constraints. Binary CSPs are important because it

has been proven that any non-binary CSP can be transformed into an equivalent

binary one [81]. And it is easier, at least in theory, to manipulate a binary constraint

rather than a higher-level constraint.

Let us assume that for a given binary CSP there is a unique constraint 𝐶𝑘 =
(𝑆𝑘, 𝑅𝑘) with 𝑆𝑘 = {𝑋𝑖, 𝑋𝑗}. Then, for the sake of readability, we denote this 𝐶𝑘
constraint as 𝐶𝑖𝑗, which in turn is equivalent to 𝐶𝑗𝑖.

n-ary constraints

If a constraint affects 𝑛 variables, we call it an 𝑛-ary constraint. The term “𝑛-ary”
with 𝑛 > 2 is usually used to differentiate a constraint from the unary and binary

constraints.

In the general case, an 𝑛-ary constraint 𝐶𝑘 refers to a fixed number of variables
𝑛 = |𝑆𝑘| that can be assigned values out of an arbitrary set of tuples 𝑅𝑘.

With the more specialized “global constraint” term we refer to a constraint

pattern such as “all the variables in 𝑆𝑘 should be assigned different values” that
can be applied to any number 𝑛 of constraints variables.
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𝐶

𝑋𝐵 ≠ 𝑋𝐶

Figure 2.2: A constraint network

𝑋2

𝑋4

𝑋1

𝑋3

Figure 2.3: The four Thessaly prefectures

2.1.2 Constraint networks

It is easy to view a binary CSP as a graph. We consider its variables as the

nodes of the graph, and we consider the constraints between the variables as the

edges or arcs that connect the nodes (Fig. 2.2).

Even when Ugo Montanari first stated the CSP definition back in 1974, it

was made clear that the notions of a constraint network and a binary CSP are

interchangeable. Non-binary CSPs can be depicted as hypergraphs [61].

2.1.3 Map-coloring problem

CSPs cover a wide range of problems, including planning and scheduling [9],

logic puzzles [47], all Boolean satisfiability problems [65], circuit design [76],

robotics [56], and many others. CSPs are widespread because they express

many problems that occur in real life.

There exists a huge list of interesting CSPs [38, 39]. For example, map-

coloring is a CSP for assigning colors to each prefecture in a given map, so as no

neighboring prefectures have the same color. Figure 2.3 illustrates a map of the

Greek region “Thessaly,” containing four prefectures; the colors in the figure form

an indicative solution.

Problem 1. Typically, “Thessaly-coloring” is a CSP with:
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1. Four constrained variables: 𝑋1, 𝑋2, 𝑋3, 𝑋4. Each one of them represents a

prefecture color.

2. The corresponding domains are 𝐷𝑋1 = 𝐷𝑋3 = {1, 2} and 𝐷𝑋2 = 𝐷𝑋4 = {1, 3}.
Numbers 1 2 3 represent respectively red, green, blue.1

3. The constraints are 𝑋1 ≠ 𝑋2, 𝑋1 ≠ 𝑋3, 𝑋2 ≠ 𝑋3, and 𝑋2 ≠ 𝑋4.
The solution in Fig. 2.3 is represented by the assignment

{𝑋1 ← 1, 𝑋2 ← 3, 𝑋3 ← 2, 𝑋4 ← 1} . (2.1)

2.1.4 Constrained optimization

A variation of Constraint Satisfaction Problems (CSPs) is the so-called Con-

strained Optimization Problems (COPs). A COP consists of variables, domains,

and constraints, just like any CSP. The difference is that a COP also requires an

objective function which maps any solution to a number, which is called the cost

of the solution. The target while solving a COP is not just to find a solution, but to

find a best solution, i.e. a solution with a minimum cost.2

COPs can be solved like CSPs, using a branch and bound strategy: When a

solution is found, its cost is recorded, and a new constraint is added to guarantee

that the next solution will have a smaller cost than the recorded one.

In relation to CSP solving, the only additional requirement of the above COP

solving procedure is adding dynamically a new constraint while searching. This

makes it compatible with plain CSP search methods, so this work covers both

CSPs and COPs as a whole.

On the other hand, this work does not cover convex optimization, a variant intro-

duced in Mathematics which paved the way for advances in Computer Science [16].

Besides, convex optimization applies to continuous domains, e.g. [0.5, 3.1], while
in Constraint Programming we focus on discrete domains of constrained variables,

e.g. {1, 2, 3}.

2.2 A goal-driven search methods framework

Apart from a way to state CSPs, a user/programmer needs an elegant way

to state search methods that solve them. The CSPs should be “search-methods-

agnostic,” while the search methods should be “CSP-agnostic” in order to keep

the independence between Constraint Programming stages.

In related works, a lot of search methods have been implemented “out of the

box” in modern solvers [36]. This means, at least to our knowledge, that the

implemented search methods are coupled with the existing solvers. Nevertheless,

in this work we use Naxos, a Constraint Programming solver created by us that
not only supports the definition of ad hoc CSPs, but also facilitates the definition

of “custom” search methods [67].

1We could initially set all the domains equal to {1, 2, 3}. We used smaller initial domains just to

simplify the problem.
2There is also a COP variation which requires to find the solution with the maximum cost.

However, for simplicity reasons, we will not focus on it, as it can be easily transformed into a COP

with a minimization objective.
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1: function DFS(ℓ)
▷ The method reached the search tree level ℓ:

2: 𝐷′ℓ ← 𝐷ℓ
3: for each 𝑣 ∈ 𝐷′ℓ do
4: 𝐷ℓ ← {𝑣} ▷ Assign 𝑣 to 𝑋ℓ
5: if no constraint is violated then

▷ Proceed to the next variable/level:

6: if ℓ = 𝑛 then
7: return success

8: else if DFS(ℓ + 1) = success then
9: return success

10: end if

11: end if

12: end for

13: 𝐷ℓ ← 𝐷′ℓ
14: return failure

15: end function

Figure 2.4: Defining DFS using an imperative pseudocode language

2.2.1 Search methods are made up of goals

Every constructive search method is built up of goals. Each goal executes an

operation, e.g. an assignment of a value to a constrained variable, and/or returns

another goal to be executed. The goal returned can be a meta-goal, which is a

goal that refers to another two goals. There are two meta-goal kinds:

1. The AND(𝑔1, 𝑔2), which implies that the two sub-goals 𝑔1 and 𝑔2 must be
executed and succeed both.

2. The OR(𝑔1, 𝑔2), which executes 𝑔1. If 𝑔1 does not succeed, i.e. if it does not
lead to a solution, then 𝑔2 is executed.

This goal-driven framework is able to describe most of the common search meth-

ods.

Note that even if we do not explicitly state it for the sake of simplicity, after each

goal is executed, we ensure that every constraint is respected. If any constraint is

violated after a goal’s execution, the goal is considered as failed.

2.2.2 The Depth-First Search example

Depth-first search (DFS) is an elementary search method also known as

backtracking search in the Constraint Programming world. This method iterates

through the variables of a CSP. For each variable 𝑋 selected, it selects a value 𝑣
from its domain and makes the assignment 𝑋 ← 𝑣. It subsequently proceeds to
the next unassigned variable and makes another assignment, etc. as in Fig. 2.4.

If every variable is assigned a value and no constraint is violated, the assign-

ments set comprises a solution. In any case, if there is a constraint violated, the

last assignment to a variable is undone and we try to assign another value from its
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domain. If all the alternative values are exhausted, we backtrack to the previous

variable selected and we undo its assignment and so forth.

2.2.3 Defining DFS using goals

DFS can be straightforwardly described via goals. The ultimate goal in DFS

and in every constructive search method is to Label every variable with a value.
Each Label’s call aims to Instantiate a variable.

• DFS(X ) := Label(X ).

• Label(∅) := success.

• Label(X ) := AND(Instantiate(𝑋), Label(X −{𝑋})), with 𝑋 ∈ X ,

where X is the set of all the variables. While Label iterates recursively through
the CSP variables, an Instantiate call attempts to assign a selected value 𝑣
to the variable 𝑋. If the assignment fails to produce a solution, the value 𝑣 is
deleted and another instantiation is attempted, until all the alternatives in 𝐷𝑋 are
exhausted.

• Instantiate(𝑋) := failure, with 𝐷𝑋 = ∅.

• Instantiate(𝑋) := OR(𝑋← 𝑣, AND(𝐷𝑋←𝐷𝑋−{𝑣}, Instantiate(𝑋))), with
𝑣 ∈ 𝐷𝑋.

The interdependencies between the above DFS goals are graphically displayed

in Fig. 2.5.

Again, please note that in the above DFS description, we have omitted to

check the constraints. Nevertheless, as we have stated in the previous section,

after each goal is executed, it is implied that we check that no constraint is violated.

This check is very important when we make an assignment or when a domain is

modified. If any constraint is violated, the goal is automatically marked as failed

by the framework.

2.2.4 Example: Applying DFS on a CSP

Let us search for a solution of the “Thessaly-coloring” Problem 1 by applying

DFS on it.

• We begin by adding the DFS(X ) goal which is substituted by Label(X ).

This will generate the rest of the goals.

• According to the above DFS definition, Label(X ) will be substituted by

AND(Instantiate(𝑋1), Label({𝑋2, 𝑋3, 𝑋4})).

1. The first subgoal is Instantiate(𝑋1) which in turn implies OR(𝑋1←1,
AND(𝐷𝑋1←𝐷𝑋1−{1}, Instantiate(𝑋1))).
This means that we assign the value 1 to 𝑋1. If this goal or the subse-
quent goals fail, we will revoke their changes and execute AND(𝐷𝑋1←
𝐷𝑋1−{1}, …).
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DFS(X )

Label(X )

AND

Instantiate(𝑋)

OR

𝑋←𝑣 AND

𝐷𝑋←𝐷𝑋−{𝑣} Instantiate(𝑋)

Label(X −{𝑋})

Figure 2.5: The combination of the goals that compose DFS

2. The second subgoal is Label({𝑋2, 𝑋3, 𝑋4})). This will be substituted by
AND(Instantiate(𝑋2), Label({𝑋3, 𝑋4})).
– Instantiate(𝑋2) in turn implies OR(𝑋2←1, AND(𝐷𝑋2←𝐷𝑋2 −{1},
Instantiate(𝑋2))).

– Nevertheless, the assignment 𝑋2←1 violates the constraint 𝑋1 ≠ 𝑋2
and we will have to revert to AND(𝐷𝑋2←𝐷𝑋2 − {1}, …). This will

eventually generate 𝑋2←2.

And we continue to execute goals which in turn may generate other goals, until

every one of them is satisfied.

2.2.5 Defining Iterative Broadening using goals

Figure 2.6 displays the corresponding goals’ graph for the Iterative Broadening

search method [42]. The goals’ structure is similar to DFS. However, one basic

difference is that there is one more level, namely Broadening, above the ordinary
DFS goals.

• Broadening(X , Breadth) := failure, if Breadth > 𝑑,

• Broadening(X , Breadth) := OR(Label(X , Breadth),

Broadening(X , Breadth + 1)), otherwise.

For each Iterative Broadening iteration, the Breadth parameter defines the maxi-

mum number of values that a constrained variable can be successively assigned.

This value is initially 1. The Breadth value cannot exceed 𝑑, which in this context
is the maximum cardinality (size) of the domains of all constrained variables. If

Breadth exceeds 𝑑, Broadening fails.
Therefore, a second basic difference in comparison with DFS comes into play.

The Instantiate goal takes now two more arguments.
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Broadening(X , Breadth)

OR

Label(X , Breadth)

AND

CurrentBreadth←0 Instantiate(𝑋, CurrentBreadth, Breadth)

OR

𝑋←𝑣 AND

𝐷𝑋←𝐷𝑋−{𝑣} Instantiate(𝑋, CurrentBreadth + 1, Breadth)

Label(X −{𝑋}, Breadth)

Broadening(X , Breadth + 1)

Figure 2.6: The goals composing Iterative Broadening

𝑋1 ∶
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𝑋3 ∶
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1

ℎ
𝑋
2 ←
3

Figure 2.7: The search tree for Thessaly-coloring

• Instantiate(𝑋, CurrentBreadth, Breadth) := failure, if 𝐷𝑋 = ∅,

• Instantiate(𝑋, CurrentBreadth, Breadth) := failure, if CurrentBreadth >
Breadth,

• Instantiate(𝑋, CurrentBreadth, Breadth) := OR(𝑋←𝑣,
AND(𝐷𝑋←𝐷𝑋−{𝑣}, Instantiate(𝑋, CurrentBreadth + 1, Breadth))),

otherwise.

This implements Iterative Broadening’s semantics: The number of consecutive

instantiations to the same variable cannot exceed Breadth.

2.2.6 Search tree exploration

A search tree is a descriptive way to depict every possible assignment in a CSP,

such as map-coloring. Figure 2.7 displays the search tree for the Thessaly-coloring

problem. The struck-out nodes have been pruned as nogoods.

Each path from the root (i.e. the uppermost node) represents an assignment.

If the path from the root ends up into a leaf (lowest node), we have a complete

assignment. E.g., the dotted path in Fig. 2.7 is an alternative form of the solution

assignment in (2.1).
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Each node is extended into two (or more) branches that represent two alter-

native choices. The presented search methods framework naturally supports

distributed search methods. The left and right branches of some selected nodes

can be explored concurrently to reduce the total tree exploration time. There are

many different approaches regarding which nodes should be selected in order to

split their two sub-trees [70, 79]. In Chapter 5, we distribute the search tree using

the MapReduce approach.

2.3 Constraint propagation

Constraint propagation comes along with the aforementioned search methods

and is interchanged with them. It is used to narrow the search trees by removing

nogood values out of the domains of the constrained variables.

2.3.1 Example

Let us say that we have to crack a password ⟨𝑋1, 𝑋2, 𝑋3⟩ consisting of three
decimal digits. In order to guess them, we are given hints for five combinations.

1 ⟨6, 8, 2⟩ One number is correct and well placed

2 ⟨6, 1, 4⟩ One number is correct but wrongly placed

3 ⟨2, 0, 6⟩ Two numbers are correct but wrongly placed

4 ⟨7, 3, 8⟩ Nothing is correct

5 ⟨7, 8, 0⟩ One number is correct but wrongly placed

We can naturally model this puzzle as a constraint satisfaction problem of three

variables 𝑋1, 𝑋2, 𝑋3, with initial domains 𝐷1 = 𝐷2 = 𝐷3 = {0, 1, 2, … , 9}.
To solve this puzzle, it is not necessary to iterate through all the 1,000 candidate

passwords and check them against the given constraints. An intelligent method

would propagate the constraints of the above table.

• From the 4th constraint, we conclude that the domains of the variables do

not contain 7, 3, and 8.

• From the above and the 5th constraint, we conclude that 𝑋1 = 0 or 𝑋2 = 0.
After all, the values 7 and 8 are incorrect, so 0 is correct, but wrongly placed.

• From the above and the 3rd constraint, we conclude that 𝑋1 = 0, as we are
told that 0 is wrongly placed as the second digit.

• From the first two constraints, 6 cannot be a correct digit.

• Therefore, from the 1st constraint, 𝑋3 = 2, as neither 6 nor 8 can be correct
digits.

• Finally, from the 2nd constraint, 𝑋2 = 4, because if 1 was correct, we should
assign it either to 𝑋1 or to 𝑋3, which would contradict the above.
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This was a constraint propagation example that directly gave the solution

⟨𝑋1, 𝑋2, 𝑋3⟩ = ⟨0, 4, 2⟩. Normally, in other CSPs, constraint propagation should be
combined with a search method. But in any case, it is apparent that propagation

can dramatically reduce the search space, i.e. the set of candidate solutions that

we should check.

2.3.2 Node consistency

Consistency is a very useful property in the road to solve a CSP. It implies that

the values of the domains of each variable have a kind of support with respect to

the CSP constraints.

The most trivial consistency form is node consistency, which implies that the

domain of every variable should support the unary constraint where the variable

is involved.

Example 1. Let 𝑋1 and 𝑋2 be two constrained variables with domains 𝐷1 = {1, 2, 3}
and 𝐷2 = {5, 6, 7, 8, 9} and the respective unary constraints 𝐶1 = ({𝑋1}, {(1), (2), (3)})
and 𝐶2 = ({𝑋2}, {(5), (6), (7)}) which can be simply stated as 𝑋2 < 8.

𝑋1 is node consistent as all its values are included in the respective unary

constraint 𝐶1. On the other hand, 𝑋2 in node inconsistent, as the values 8 and 9 in
𝐷2 are not supported in 𝐶2.

2.3.3 Arc consistency

Definition 2. An arc (𝑋𝑖, 𝑋𝑗) is arc consistent iff for each 𝑣𝑖 ∈ 𝐷𝑖 there exists a

𝑣𝑗 ∈ 𝐷𝑗 with (𝑣𝑖, 𝑣𝑗) not violating 𝐶𝑖𝑗.

Example 2. Let 𝑋1 and 𝑋2 be two constrained variables with domains 𝐷1 = {1, 2, 3}
and 𝐷2 = {5, 6, 7, 8, 9}. Let us assume that the constraint between the variables is
𝑋2 = 4 + 𝑋1.

(𝑋1, 𝑋2) is arc consistent, as for each of the values 1, 2, 3 in 𝐷1, the correspond-
ing values 5, 6, 7 belong to 𝐷2.

On the other hand, (𝑋2, 𝑋1) is not arc consistent. To prove this, we need just
one value from 𝐷2 that does not have any support in 𝐷1. Indeed, for the value 8 in
𝐷2, there is not any 𝑣1 in 𝐷1 with 4 + 𝑣1 = 8.

If we want to make (𝑋2, 𝑋1) arc consistent, we should remove the values 8 and
9 out of 𝐷2 as they do not have any supports in 𝐷1.

This example also illustrates that consistency is not a symmetric property.

In order to check if an arc (𝑋𝑖, 𝑋𝑗) is arc consistent, we have to iterate through
all the values of 𝐷𝑖. The function that does this and removes the unsupported
values from 𝐷𝑖 is called Revıse.

function Revıse(𝑋𝑖, 𝑋𝑗)
domain_is_modified← false

for each 𝑣𝑖 ∈ 𝐷𝑖 do
value_is_supported← false

for each 𝑣𝑗 ∈ 𝐷𝑗 do
if (𝑣𝑖, 𝑣𝑗) ∈ 𝑅𝑖𝑗, with 𝐶𝑖𝑗 ∈ C then
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value_is_supported← true

break

end if

end for

if value_is_supported then
continue

else

Remove 𝑣𝑖 out of 𝐷𝑖
domain_is_modified← true

end if

end for

return domain_is_modified
end function

Revıse returns true when it has removed at least one value out of a domain.

Coarse-grained vs. fine-grained arc consistency algorithms

Revıse function is able to make consistent just one arc. What about making the

whole constraint network arc consistent? There is a whole family of arc consistency

algorithms, and AC-3 is the most prominent and used one.

function AC-3
𝑄 ← {(𝑋𝑖, 𝑋𝑗) | 𝐶𝑖𝑗 ∈ C }
while 𝑄 ≠ ∅ do

Remove an arc (𝑋𝑖, 𝑋𝑗) out of 𝑄
if Revıse(𝑋𝑖, 𝑋𝑗) then

𝑄 ← 𝑄 ∪ {(𝑋𝑘, 𝑋𝑖) | 𝐶𝑘𝑖 ∈ C , 𝑘 ≠ 𝑗}
end if

end while

end function

As AC-3 initially puts every arc into the 𝑄, all constraints are revised. When

a domain of a variable 𝑋𝑖 is modified by the Revıse function, the modification is
propagated to the other constrained variables which are linked to 𝑋𝑖 via an arc.

The algorithms, such as AC-3, that propagate the removal of a value out of

a domain to the other linked constrained variables (using a queue of arcs) are

called coarse-grained arc consistency enforcement algorithms.

On the other hand, the algorithms which propagate the removal of a value

using a queue that apart from arcs also contains values of domains, are called

fine-grained arc consistency enforcement algorithms.

Fine-grained algorithms are typically faster than coarse-grained ones. Nev-

ertheless, they require complex data structures to propagate modifications to (a

bigger set of) domain values rather than to (a smaller set of) variables as coarse-

grained algorithms do, and they are unavoidably not used in practice. After all,

Bessiere et al. eventually constructed a coarse-grained algorithm that performs

as fast as its fine-grained counterparts [12].
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Maintaining arc consistency

As illustrated in Fig. 2.8, arc consistency does not necessarily imply that we

have a solution. Therefore, in order to create a solution, we have to combine

arc consistency with a search method. After all, arc consistency reduces the

search space that a search method—such as depth first search (DFS) or limited

discrepancy search (LDS) etc.—has to explore.

According to the maintaining arc consistency (MAC) methodology, we should

begin searching for a solution by repeating the assignment of values to variables

and by checking every time—e.g. after each assignment—if the constraint network

is arc consistent. If an assignment causes an inconsistency, then it should be

canceled, and another value should be chosen.

2.3.4 Path consistency

Arc consistency each time involves only two variables and checks whether

the values of the one variable are supported by the values of the other variable.

Nevertheless, this has the drawback of focusing only on a part of the CSP and

loses sight of the big picture.

Consider the CSP in Fig. 2.8a. All the arcs are consistent but the CSP itself is

“inconsistent” as it has no solution. That is why this type of consistencies, such as

arc consistency, are called local. Because they affect a subset of the variables or

constraints and do not imply the complete CSP consistency.

Path consistency is another local consistency variant that is broader than arc

consistency in the sense that it involves more than two variables.

Definition 3. The variables 𝑋𝑖1 and 𝑋𝑖𝑚 are path consistent if and only if for

every pair of values (𝑣𝑖1, 𝑣𝑖𝑚) ∈ 𝐷𝑖1 × 𝐷𝑖𝑚 that satisfies the 𝐶𝑖1𝑖𝑚 constraint (and the

respective unary constraints) and for every path of variables (𝑋𝑖1, 𝑋𝑖2, … , 𝑋𝑖𝑚) there
are values (𝑣𝑖2, … , 𝑣𝑖𝑚−1) ∈ 𝐷𝑖2 ×⋯×𝐷𝑖𝑚−1 so that (𝑣𝑖1, 𝑣𝑖2), (𝑣𝑖2, 𝑣𝑖3), …, and (𝑣𝑖𝑚−1, 𝑣𝑖𝑚)
satisfy the respective binary (and unary) constraints.

Evidently, the CSP in Fig. 2.8a is path inconsistent, as for each valid combina-

tion of the values of the first two variables, there does not exist a value in the third

variable that supports it.

2.3.5 k-consistency

Node consistency involves one variable, arc consistency has to do with two

variables, and path consistency with three. What about an arbitrary number of 𝑘
variables?

Definition 4. The variables 𝑋𝑖1, 𝑋𝑖2, …, 𝑋𝑖𝑘−1 are 𝑘-consistent with respect to the
variable 𝑋𝑖𝑘 if and only if for every tuple of values (𝑣𝑖1, 𝑣𝑖2, … , 𝑣𝑖𝑘−1) ∈ 𝐷𝑖1×𝐷𝑖2×⋯×𝐷𝑖𝑘−1
that satisfies the corresponding constraints (of the 𝑘 − 1 variables) there is a value
𝑣𝑖𝑘 ∈ 𝐷𝑖𝑘 so that the extended tuple (𝑣𝑖1, 𝑣𝑖2, … , 𝑣𝑖𝑘−1, 𝑣𝑖𝑘) satisfies all the constraints
between the 𝑘 variables.

47 N. Pothitos



Constraint Programming: Algorithms and Systems

𝑋𝐴
{1, 2}

𝑋𝐵
{1, 2}

𝑋𝐶
{1, 2}

𝑋 𝐵
≠ 𝑋 𝐴

𝑋
𝐴 ≠ 𝑋

𝐶

𝑋𝐵 ≠ 𝑋𝐶

(a) There is no solution

𝑋𝐴
{1, 2}

𝑋𝐵
{1, 2}

𝑋𝐶
{2, 3}

𝑋 𝐵
≠ 𝑋 𝐴

𝑋
𝐴 ≠ 𝑋

𝐶

𝑋𝐵 ≠ 𝑋𝐶

(b) There are two solutions

𝑋𝐴
{1, 2}

𝑋𝐵
{1, 2}

𝑋𝐶
{2, 3}

𝑋 𝐵
≠ 𝑋 𝐴

𝑋
𝐴 ≠ 𝑋

𝐶

𝑋𝐵 ≠ 𝑋𝐶
¬((𝑋𝐵 = 2) ∧ (𝑋𝐶 = 3))

(c) There is a unique solution

Figure 2.8: Three arc consistent constraint networks
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1-consistency is identical to node consistency, 2-consistency coincides with

arc consistency, and 3-consistency is equivalent to path consistency if the CSP is

binary, as path consistency is only defined for binary CSPs, while 3-consistency

may involve ternary constraint too.

2.3.6 Interchanging constraint propagation with a search method

Constraint propagation is a form of inference [10] and reasoning [11]. It is

an intelligent methodology incorporated in constraint programming solvers. A

common usage in such solvers is to execute constraint propagation after each

search method step, i.e. after each single search method goal execution.

Following the example in section 2.2.4, let us search for a solution of the

“Thessaly-coloring” Problem 1 by applying DFS on it. After each search method

step, we propagate constraints trying to reduce the overall needed steps.

• We begin by adding the Label(X ) goal. This will generate the rest of the

goals. Constraint propagation execution does not have now any effect.

• Label(X ) generates AND(Instantiate(𝑋1), Label({𝑋2, 𝑋3, 𝑋4})).

1. The first subgoal is Instantiate(𝑋1) which in turn implies OR(𝑋1←1,
AND(𝐷𝑋1←𝐷𝑋1−{1}, Instantiate(𝑋1))).
This means that we assign the value 1 to 𝑋1. Due to the 𝑋1 ≠ 𝑋2 and
𝑋1 ≠ 𝑋3 constraints, constraint propagation removes this value out of
𝐷2 and 𝐷3.

2. The second subgoal is Label({𝑋2, 𝑋3, 𝑋4})). This will be substituted by
AND(Instantiate(𝑋2), Label({𝑋3, 𝑋4})).
– Instantiate(𝑋2) in turn implies OR(𝑋2←2, AND(𝐷𝑋2←𝐷𝑋2 −{2},
Instantiate(𝑋2))).

– We continue to execute goals which in turn may generate other

goals, until every one of them is satisfied.

Please note that in comparison with the example in section 2.2.4, we have already,

even in the execution of the first goals, one unnecessary step (𝑋2←1) truncated
due to constraint propagation, as the nogood value 1 is proactively removed out
of 𝐷𝑋2.

2.4 Naxos Solver: Our guinea pig

More than fifteen years ago, we started to create the Constraint Programming

Naxos Solver that supports all the aforementioned classic Constraint Satisfaction
properties. We published it as an open-source project and today it is used by a

broad audience.3

To ensure that the contributions of this dissertation will be used in practice, we

first applied and tested them in this real solver. Otherwise, our proposals would

3https://github.com/pothitos/naxos
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be “like shooting an arrow into the air and, where it lands, painting a target” as the

chemist Homer Burton Adkins (1892–1949) once said.

2.4.1 Constraints from a C++ programmer’s perspective

The N Queens problem

Definition. In the 𝑁 queens problem, we should place 𝑁 queens on an 𝑁 × 𝑁
chessboard, so that no queen is attacked. In other words, we should place 𝑁
items on an 𝑁 × 𝑁 grid, in a way that no two items share the same line, column

or diagonal. Figure 2.9 displays an example for 𝑁 = 8. The eight queens are not
attacked.

In each column 0, 1, … , 𝑁 − 1 we will have a queen. It remains to find out the
line where each queen will be placed. Therefore, we ask to assign values to the

variables 𝑋𝑖 with 0 ≤ 𝑋𝑖 ≤ 𝑁 − 1, where 𝑋𝑖 is the line on which the queen of column 𝑖
will be placed.

Regarding the constraints, first of all, no two queens should share the same

line, i.e.

𝑋𝑖 ≠ 𝑋𝑗, ∀𝑖 ≠ 𝑗. (2.2)

They should not also share the same diagonal, consequently

𝑋𝑖 + 𝑖 ≠ 𝑋𝑗 + 𝑗 and 𝑋𝑖 − 𝑖 ≠ 𝑋𝑗 − 𝑗, ∀𝑖 ≠ 𝑗. (2.3)

𝑋𝑖 − 𝑖 corresponds to the primary diagonal and 𝑋𝑖 + 𝑖 to the secondary diagonal of
the queen of column 𝑖.

Code. In the solver code, the variables 𝑋𝑖 are represented by the array Var, that
according to (2.2) should have different elements. Concerning (2.3), we create

two other arrays, namely VarPlus and VarMinus, with the elements 𝑋𝑖 + 𝑖 and
𝑋𝑖 − 𝑖 respectively. For these arrays we will also declare that their elements shall
be different between them. The relevant C++ code follows.
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0 1 2 3 4 5 6 7

0 ♕
1 ♕
2 ♕
3 ♕
4 ♕
5 ♕
6 ♕
7 ♕
Figure 2.9: Eight queens not attacking each other

int N = 8;
NsProblemManager pm;

NsIntVarArray Var, VarPlus, VarMinus;
for (int i = 0; i < N; ++i) {

Var.push_back(NsIntVar(pm, 0, N-1));
VarPlus.push_back(Var[i] + i);
VarMinus.push_back(Var[i] - i);

}
pm.add(NsAllDiff(Var));
pm.add(NsAllDiff(VarPlus));
pm.add(NsAllDiff(VarMinus));

pm.addGoal(new NsgLabeling(Var));
while (pm.nextSolution() != false)

cout << "Solution: " << Var << "\n";

SEND + MORE = MONEY

Another example is a known cryptarithm problem.

Definition. In cryptarithms we have some arithmetic relations between words,

such as SEND + MORE = MONEY. Each letter of the words represents a specific

digit from 0 to 9; thus, each word represents a decimal number. Two different

letters should not represent the same digit. E.g. for the equation SEND + MORE

= MONEY, we will put the same digit in the positions where E appears. The same
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applies for the rest of the letters, that should however be assigned different digits

than the one for E. After all the assignments, the relation of the cryptarithm should

be valid.

Code. The problem declaration for the Naxos Solver follows.

NsProblemManager pm;

NsIntVar S(pm,1,9), E(pm,0,9), N(pm,0,9), D(pm,0,9),
M(pm,1,9), O(pm,0,9), R(pm,0,9), Y(pm,0,9);

NsIntVar send = 1000*S + 100*E + 10*N + D;
NsIntVar more = 1000*M + 100*O + 10*R + E;
NsIntVar money = 10000*M + 1000*O + 100*N + 10*E + Y;

pm.add(send + more == money);

NsIntVarArray letters;
letters.push_back(S);
letters.push_back(E);
letters.push_back(N);
letters.push_back(D);
letters.push_back(M);
letters.push_back(O);
letters.push_back(R);
letters.push_back(Y);
pm.add(NsAllDiff(letters));

pm.addGoal(new NsgLabeling(letters));
if (pm.nextSolution() != false) {

cout << " " << send.value() << "\n"
<< " + " << more.value() << "\n"
<< " = " << money.value() << "\n";

}

If we execute the code, the result is

9567
+ 1085
= 10652

How do we state and solve a problem?

In the previous sections we stated some problems-examples. But what are

the steps in order to state and solve another problem? Our code is summarized

into the following triptych.

1. Constrained variables (NsIntVar) declaration, together with their domains
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2. Constraints statement (pm.add(·))

3. Goals declaration (pm.addGoal(new NsgLabeling(·))) and search for
solutions (pm.nextSolution())

The first thing to do is to create a problem manager (pm) to store the whole

constraint network. The declaration is

NsProblemManager pm;

Next, we declare the constrained variables of the problem. Remember that

while a simple variable (e.g. int x) stores only one value (e.g. x = 5), a con-

strained variable stores a range or, better, a domain. E.g., with the declaration

NsIntVar V(pm,0,5), the domain of V is the integer values range [0..5].
When there are many constrained variables, then we use constrained variables

arrays NsIntVarArray, as in the 𝑁 Queens problem. E.g.

NsIntVarArray R;

The array R is initially empty. It is not possible to define a priori neither the array
size, nor the included constrained variables domains. We can do this through an

iteration

for (i = 0; i < N; ++i)
R.push_back(NsIntVar(pm, min, max));

In place of min and max we put the minimum and maximum domain value,

respectively. Next, we declare the existing constraints through pm.add(·) calls…
Before the end, if we solve an optimization problem, it remains to declare the

parameter to optimize. When we find out this parameter-variable, we will pass it

as an argument of pm.minimize(·). This method is unnecessary when we seek
for any solution of the problem.

We can now add a goal to be satisfied through the statement

pm.addGoal(new NsgLabeling(R));

This goal instructs the solver to assign values to the constrained variables of

the array R. If we do not state this goal, the solver will not instantiate the variables
R[i], but it will only check the satisfaction of the constraints between ranges, and

the variables will not become fixed.

Finally, we execute pm.nextSolution() to find a solution. This function is
called inside a loop; every time it returns true, we have another unique problem
solution.

If we have previously called pm.minimize(·), the solver guarantees that each
new solution will be better from the previous one. In case pm.nextSolution()
returns false, then either the solution cost cannot be further improved, or there is
not any other solution. Thus, we should have stored somewhere the last solution

(and perhaps its cost too) in order to print it in the end, as in the following code for

example
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NsDeque<NsInt> bestR(N);

while (pm.nextSolution() != false) {
// Record the current best solution
for (i = 0; i < N; ++i)

bestR[i] = R[i].value();
}

// Print the best solution...

2.4.2 Search methods as C++ classes

In order to facilitate or, better, to guide search, a goals mechanism has been

implemented in the solver. The application developer that uses the solver can

declare their own goals, or they can use the built-in ones. A goal often makes an

assignment to a constrained variable, or it removes a value from the domain. If

search reaches a dead-end, the solver automatically cancels the goals that guided

to it, and the constraint network with its variables is restored back to the state

before these goals were executed.

Generally speaking, a goal can assign or remove values to one or more vari-

ables, or it can be used to choose a variable in order to be successively assigned

a value. In this way it defines the search method. While a goal terminates, it can

optionally generate another goal; this possibility provides recursion characteristics

to the goals mechanism. Last but not least, there are also the AND and OR meta-

goals. They are called “meta-goals” because each of them is used to manipulate

two other goals, namely subgoals. An AND-goal succeeds if its two subgoals

succeed both, while an OR-goal succeeds if one or more of its subgoals succeed.

It is worth to mention that the OR-goals are also known as choice points.

Indeed, they are points where we have two alternatives, that is points where the

search tree branches off. During the execution of an OR-goal, its first subgoal

is chosen, and if it finally fails, the solver cancels all the chain modifications that

were made on the domains of the variables (after the first subgoal execution);

the second subgoal is then tried. If the second subgoal also fails, then the whole

OR-goal fails.

Object-oriented modelling

The declaration for the basic goal class in Naxos Solver follows.

class NsGoal {
public:

virtual bool isGoalAND(void) const;
virtual bool isGoalOR(void) const;
virtual NsGoal* getFirstSubGoal(void) const;
virtual NsGoal* getSecondSubGoal(void) const;
virtual NsGoal* GOAL(void) = 0;

};
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The NsgAND and NsgOR meta-goal classes derive from the above NsGoal
class. NsgAND and NsgOR constructor functions take two arguments (of NsGoal*
type) that represent their two subgoals. Every NsGoal member-function—apart

from GOAL()—has to do with meta-goals. The application developer that wants

to define their own goals, has to take only care of GOAL().
Every custom goal defined by the application developer should be a class that

(directly or indirectly) extends NsGoal. Subsequently, function GOAL() should be
defined in every goal class.

GOAL() is a critical method, as the solver executes it every time it tries to

satisfy a goal. This method returns a pointer to another NsGoal instance, i.e. it
returns the next goal to be satisfied. If the pointer equals to 0, this means that the
current goal succeeded (was satisfied) and thus no other goal has to be created.

Therefore, an example follows, illustrating goals already built in the solver, as

they are widely used. These goals describe the search method depth-first-search

(DFS).

class NsgInDomain : public NsGoal {
private:

NsIntVar& Var;

public:
NsgInDomain(NsIntVar& Var_init)
: Var(Var_init) { }

NsGoal* GOAL(void)
{

if (Var.isBound())
return 0;

NsInt value = Var.min();
return (new NsgOR(new NsgSetValue(Var,value),

new NsgAND(new NsgRemoveValue(Var,value),
new NsgInDomain(*this))));

}
};

class NsgLabeling : public NsGoal {
private:

NsIntVarArray& VarArr;

public:
NsgLabeling (NsIntVarArray& VarArr_init)
: VarArr(VarArr_init) { }

NsGoal* GOAL(void)
{

int index = -1;
NsUInt minDom = NsUPLUS_INF;
for (NsIndex i = 0; i < VarArr.size(); ++i) {

if (!VarArr[i].isBound() && VarArr[i].size() < minDom) {
minDom = VarArr[i].size();
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index = i;
}

}
if (index == -1)

return 0;
return (new NsgAND(new NsgInDomain(VarArr[index]),

new NsgLabeling(*this)));
}

};

Regarding the practical meaning of the example, when we ask the solver

to satisfy the goal NsgLabeling(VarArr), we expect that all the variables of

VarArr will be assigned values. Thus, the function GOAL() of NsgLabeling
chooses a variable (specifically, the one with the smallest domain size according

to the fail-first heuristic). Then it asks (via the goal NsgInDomain that assigns

to a variable its domain minimum value) to instantiate the variable and to satisfy

the goal this. This goal—that refers to a kind of “recursion”—constructs another

NsgLabeling instance, that is identical to the current one. In fact, this tells the
solver to assign values to the rest of VarArr variables. When GOAL() returns 0,
we have finished.

NsgLabeling chooses the next variable to be instantiated, and NsgInDomain
chooses the value to assign to this variable. More specifically, it always chooses

the minimum value of the domain of the variable. Then it calls the built-in goal

NsgSetValue that simply assigns the value to the variable. If it is proved af-

terwards that this value does not guide to a solution, it is removed from the

domain by the goal NsgRemoveValue, and another value will be assigned by

NsgInDomain(*this).
Usually, when we face difficult and big problems, we should define our own

goals, like NsgLabeling and NsgInDomain. The aim is to make search more

efficient by using heuristic functions to take better decisions and choices tailored

to specific difficult CSPs.

Variable and value ordering heuristics

The decisions about which variable to instantiate next and which value to

assign to it are called heuristics, and they are crucial to the efficiency of a search

method.

In the above implementation of the DFS goals, we chose fail-first as the variable

ordering heuristic, which means that we prefer to instantiate first the variable having

the minimum domain size. Another variable ordering heuristic known as degree is

to choose the variable with the maximum edges (connections to other variables

via constraints) in the constraint network.

Having chosen a variable, the next decision to make involves the value ordering

heuristic. In the above DFS goals, we always select the minimum value out of the

domain of a variable. This is also called a lexicographical ordering.

Such kind of ordering is fast but dummy. Alternatively, one could choose the

value that is consistent to the maximum number of values belonging to the other

variables.
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3. RELATED WORK

In my own field, it once was possible for a grad student to learn just

about everything there was to know about Computer Science. But

those days disappeared about 30 years ago.

Donald Knuth, Things a computer scientist rarely talks about, 2001

Having introduced Constraint Programming and CSPs, we are now going to step

into techniques found in the bibliography that are more closely related to our

contributions that will follow this chapter (namely contributions in Heuristics and

Search in Chapter 4, Distribution in Chapter 5, Propagation in Chapter 6).

3.1 Heuristics exploitation in related work

In the road to find a solution to a CSP, Constraint Programming solvers usually

interchange search methods and constraint propagation.

• Search methods define the strategy of assigning values to the variables.

• Each time an assignment is made, constraint propagation assures that the

other variables and their domains support the assignment.

Heuristics come into play when a searchmethod has to decide (i) which variable

is going to be instantiated next and (ii) which value out of its domain to assign to

the variable. In the next two sections we describe important variable and value

ordering heuristics.

3.1.1 Variable ordering heuristics

The most known variable ordering heuristic is the fail-first one, also known

as minimum remaining values (MRV) or most constrained variable heuristic. It

suggests that the variable having the minimum size of domain should be instanti-

ated first. Nevertheless, more sophisticated approaches have been developed so

far [45].

Impact-based search

The idea behind the Impact-Based Search (IBS) heuristic is to instantiate first

the variable that will guide to the removals of as many values as possible out of
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the domains of the other variables due to constraint propagation. More formally,

this heuristic tries to minimize the Cartesian product of the domains 𝐷1 ×𝐷2 ×⋯×𝐷𝑛
when propagation occurs due to an assignment.

A straightforward implementation of this is to consecutively assign each value

𝑣 ∈ 𝐷𝑋 to the variable 𝑋 and record the impact of each assignment after constraint
propagation takes place. This should be done for every variable, and an aggregate

score for each variable will be created. The variable with the highest score would

be chosen for instantiation.

Propagating constraints without actually having decided tomake an assignment

is rather costly. What IBS proposes is to record the history of the impact of every

previous assignment and expect that they will have the same impact in the future.

Conclusively, IBS does not propagate constraints by itself, but it uses the statistics

of the past constraint propagations.

Activity-based search

The variable ordering heuristic of Activity-Based Search (ABS) exploits even

more statistics gathered during constraint propagation. For each search tree

node, when a variable is affected by constraint propagation, its relevant score

is increased. Else, if it remains unaffected, its score is decreased by a given

factor. The variables with the highest scores are favored and will be the next to

be instantiated.

The dom/wdeg heuristic

While the heuristics of IBS and ABS keep metrics for each value and each

variable respectively, the dom/wdeg heuristic keeps statistics for the constraints.
Each constraint 𝑐 has a weight 𝑤(𝑐) which is equal to 1 plus the number of times
that the constraint 𝑐 could not be satisfied.

Furthermore, a weighted degreewdeg(𝑥)metric is defined for each constrained
variable 𝑥 as the sum of all 𝑤(𝑐) where 𝑐 is a constraint that involves the variable
𝑥 plus at least one more unassigned constrained variable.

Having defined the above, the dom/wdeg variable ordering heuristic favors
the constrained variable 𝑥 with the smallest |𝐷𝑥|/wdeg(𝑥) ratio to be instantiated
first.

A recent improvement of this heuristic suggests that each time we cannot satisfy

a constraint 𝑐, we do not just increase the 𝑤(𝑐) weight by 1 but by a factor that
depends on the number of the unassigned constrained variables that 𝑐 involves
and their current domain sizes [95].

Conflict history search

All the above heuristics did not consider involving time in their scores. Habet

and Terrioux recently had the idea not only to record the failures of the constraints,

but also to compute an exponential recency weighted average (ERWA) of these

failures [45]. This means that during their Conflict History Search (CHS), we do

not just accumulate failures of constraints, but we stress the importance of the

constraints that tend to fail more recently.
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How much recent constraint failures are favored? This depends on the factors

of the ERWA formula. Depending on these factors of this moving average, we can

favor more or less the recency of the failures. The ideal ERWA factors depend on

the CSP parameters and cannot be known before solving it.

Here comes the multi-armed bandit (MAB) framework that allows us to use

many different ERWA factors on the fly and exploit the more efficient ones [20].

Combinations using the multi-armed bandit framework

Imagine that you are in a casino and you have to choose to play among four

slot machines. In fact, you cannot know a priori which one will give you back the

most money.

This is the situation regarding the aforementioned heuristics; no one is a clear

winner. In such cases, the multi-armed bandit (MAB) framework can be employed.

It is a strategy to experiment with the arms of many “slot machines” and maximize

your reward.

Xia and Yap recently used MAB to choose between IBS, ABS, and dom/wdeg
heuristics at each search tree node [99]. Furthermore, Wattez et al. also included

CHS as one more arm to choose from. In their work, each heuristic-arm is chosen

when search restarts and not on a search tree node level [94].

3.1.2 Value ordering heuristics

Least-constraining value (LCV) is a well-known value ordering heuristic. It

suggests choosing the value (to assign to a constrained variable) that will trigger

the removal of as few as possible values from the domains of the other variables

during constraint propagation.

Another value ordering heuristic specially designed for Constrained Optimiza-

tion Problems (COPs) that has been recently proposed is to choose the value that

will guide to the biggest improvement of the cost function [31].

3.1.3 Heuristics in deterministic search methods

In constructive search, one can build a solution either with a deterministic/

systematic search method or by making one-by-one random assignments. Do

these methods exploit heuristics and how?

To our knowledge, existing search methods such as limited discrepancy search

(LDS) use heuristics only to order the possible assignments and do not exploit

the difference of the one heuristic estimation to another, but only their rank [75].

For example, the iterative broadening method initially explores only a limited

children’s number for each search tree node [42]. Of course, in its first iterations,

it chooses to visit only the children with the highest ranks. Credit search [7] and

limited assignment number (LAN) [8] are other deterministic methods that also

take into account the rank of the heuristic estimations and not the heuristic values

themselves.

Last but not least, there are also methods that make the assumption that the

heuristic function is more reliable as the search tree node depth increases. E.g.,
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depth-bounded discrepancy search (DDS) allows to override a heuristic estimation,

only when we have not yet reached a specific search tree depth [91]. Finally, there

are some methodologies that take into account two or more heuristic functions

and learn as the search proceeds which heuristic is the best to use [100].

3.1.4 Heuristics in random search methods

On the other hand, stochastic search methods completely ignore heuristics,

as they choose to make an assignment at random [48]. For example, depth first

search with restarts traverses the search tree making random choices, and when

a specific time limit is reached, it restarts from the beginning.

3.1.5 Local search methods

The aforementioned search methods belong to constructive search, as they

build a solution from scratch, step by step, by assigning a value to a variable each

time.

On the other hand, there are non-systematic indirect search methods, also

known as local search methods, which assemble a candidate solution, and then

try to fix it by repairing conflicting sets of variables and constraints. Local search

iteratively tries to repair the candidate solution, in order to satisfy the constraints

a posteriori [46]. This is especially useful when solving difficult CSPs, and we

are therefore happy just to find a solution, without usually caring if all candidate

solutions will be examined.

Stochastic local search makes a random repair action in each step. There are

many other local search variants.

Hill climbing. A well-known variant is hill climbing, also known as iterative

improvement. In each step, it changes only one variable assignment (1-exchange).

Normally, wemake the change which will reduce the violated constraints number as

much as possible [25] and this is called themin-conflicts local search heuristic that

has been successfully applied in scheduling and to a plenty of other problems [2].

Simulated annealing. The above practice is prone to be trapped into local

minima. This means that we can end up in a candidate solution that cannot be

improved by modifying only one assignment anymore. In this case, we have to

escape the current local minimum by making a random step.

Simulated annealing methodology permits random steps to skip local minima

while a parameter called temperature is high; as time passes by and temperature

drops, the method becomes less tolerant in random steps, especially if their

evaluation is poor [28, 49]. In this work we attempt to bring this (local search)

approach in constructive search methods.

3.1.6 Heuristics and probabilities

When a search method has to choose which constrained variable to instantiate

next or which value should be assigned to the variable, heuristics come in handy.
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Heuristics are normally used to order the available choices: the choice with the

highest rank is mostly favored. Nevertheless, there is related work where a choice

with a lower rank can also be favored. This can be accomplished by transforming

heuristic values into probabilities.

Heuristic-biased stochastic sampling

In 1996, Bresina transformed the heuristic ranks into probabilities via the so-

called heuristic-biased stochastic sampling (HBSS) [17]. He provided a set of

various decreasing functions bias(𝑟), e.g. 1𝑟 or 𝑒
−𝑟 etc., that take a specific integer

choice rank 𝑟 ∈ {1, 2, …} and return a number that corresponds to the probability
of the choice to be selected.

Example 3. Suppose that we have to choose a value to assign to a constrained

variable. For example, we may have to assign to the variable 𝑋 a value out of its
domain 𝐷𝑋 = {𝑣𝑎, 𝑣𝑏, 𝑣𝑐, 𝑣𝑑}. Which one is better?

A heuristic comes into play to evaluate the four choices. Let us say that the

respective heuristic values are ℎ𝑎 = 8, ℎ𝑏 = 9, ℎ𝑐 = 6, and ℎ𝑑 = 7. Hence, the
respective ranks of the choices are 𝑟𝑎 = 2, 𝑟𝑏 = 1, 𝑟𝑐 = 4, and 𝑟𝑑 = 3. According to
the heuristic function the choice 𝑏 prevails.

Normal search methods would choose always option 𝑏, i.e. to assign 𝑣𝑏 to 𝑋.
Nevertheless, as mentioned above the HBSS method would make this choice

non-deterministic and assign probabilities to each choice.

In this example, if we define bias(𝑟) = 1
𝑟 , the respective probabilities for the

choices 𝑎, 𝑏, 𝑐, 𝑑 would be 1
2 ,

1
1 ,

1
4 ,

1
3 , each one divided by ∑bias(𝑟). Thus, we

have 𝑃𝑎 = 0.24, 𝑃𝑏 = 0.48, 𝑃𝑐 = 0.12, 𝑃𝑑 = 0.16. Again, it is more probable to

make choice 𝑏, with a 48% probability. But the alternative choices have significant

probabilities too.

Value-biased stochastic sampling

Cicirello and Smith improved HBSS by introducing the value-biased stochastic

sampling (VBSS). The bias function now takes as argument the heuristic value

itself [22].

Example 4. Let us recompute the probabilities for the four choices in Example 3,

using the VBSS methodology this time. We just need to substitute the bias(𝑟𝑖)
function in the above example with the ℎ𝑖 value itself.

Therefore, the corresponding probabilities would be computed as ℎ𝑖/∑ℎ𝑖 and
we will get the probabilities 𝑃𝑎 = 0.27, 𝑃𝑏 = 0.30, 𝑃𝑐 = 0.20, 𝑃𝑑 = 0.23.

Note that the probabilities to make one of the choices 𝑎 and 𝑏 are almost

equal. This is due to the fact that ℎ𝑎 and ℎ𝑏 are almost equal too, and these values
directly affect the respective probabilities.

Heuristic equivalence

On the other hand, Gomes et al. exploit the so-called heuristic equivalence

to equate the choices with the highest heuristic values [43]. In this way, we can
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exclude the choices with the lower heuristic values and select at random amongst

the choices with the most prevailing values.

Example 5. Again, let us consider the heuristic values of Example 3 and recompute

the probabilities for the respective choices using the heuristic equivalence this

time. Also, let us suppose that we set a threshold value 7.5. Every heuristic value
above the threshold will be considered as “high.”

Therefore, the heuristic values below 7.5 will be considered as low, and the
corresponding choices 𝑐 and 𝑑 will be discarded, with zero probabilities.

The remaining choices 𝑎 and 𝑏 would be then selected with equal probabilities
𝑃𝑎 = 𝑃𝑏 = 0.5.

Skewed probability distributions

Random search methods use the uniform distribution to select between the

candidate choices. Gracas et. al have recently employed the geometric and

the triangular probability distributions instead, also known as skewed probability

distributions or non-symmetric. They first short the candidate choices according

to a given criterion and then map each choice to an already given decreasing

probability distribution. Therefore, the first candidate choice has the greatest

probability to be selected and the last candidate solution has the lowest probability

to be made [44].

3.2 Distributing Constraint Programming with MapReduce

In 2004, Jeff Dean and Sanjay Ghemawat publishedMapReduce, a framework

initially designed for Google’s very large database [27]. This paradigm synchro-

nizes a plethora of machines, so as to read the whole Internet archive and “mine”

information as needed.

3.2.1 Mappers and reducers

The cooperation of so many machines-nodes is viable, as MapReduce adopts

a specific data flow architecture. This implies that there are some restrictions, as

broadcasting a message and sharing data between nodes are not permitted.

The available computers are divided into two groups: The Mappers process

the input. Each Mapper is assigned a part of the input. Then, it emits tuples such

as ⟨𝑟1, 𝑠1⟩, ⟨𝑟2, 𝑠2⟩, etc. Each 𝑟𝑖 denotes the key field of the tuple, while 𝑠𝑖 contains
the rest of the tuple’s fields.

The second machines group is the Reducers which accept the tuples. De-

pending to 𝑟𝑖, each tuple ⟨𝑟𝑖, 𝑠𝑖⟩ is directed toward a specific Reducer.

Example 6. A basic introductory MapReduce application is used for counting the

occurrences of each word in a text file.

1. For example, let us say that a text file has the content “design is not just
what it looks and it feels like; design is how it works” [90].
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2. Let us say that a MapReduce system with two mappers and two reducers

is responsible to count how many times each word appears in the text, e.g.

design, 2.

3. The text is split into parts, e.g. “design is not just what it looks and
it feels like” and “design is how it works”.

4. Each part is assigned to a specific mapper. Let us say that the first mapper

will process the first part and the second mapper will process the second

part of the text.

5. The first mapper emits the tuples for the occurrences of the words of

the first part, in the form ⟨𝑤𝑜𝑟𝑑, 𝑛⟩, where 𝑛 is the occurrences number

of the 𝑤𝑜𝑟𝑑: ⟨design, 1⟩, ⟨is, 1⟩, ⟨not, 1⟩, ⟨just, 1⟩, ⟨what, 1⟩, ⟨it, 2⟩,
⟨looks, 1⟩, ⟨and, 1⟩, ⟨feels, 1⟩, ⟨like, 1⟩.

6. Concurrently, the second mapper emits the tuples that correspond to the

second part: ⟨design, 1⟩, ⟨is, 1⟩, ⟨how, 1⟩, ⟨it, 1⟩, ⟨works, 1⟩.

7. The first field of each tuple is its key. Two tuples with same keys are sent

to the same reducer. Generally speaking, each reducer is responsible to

process specific keys. In this example, the first reducer processes the keys

having a first character in the range a–m and the second reducer processes

the tuples with keys that start with n–z.

8. Each reducer outputs the aggregate occurrences for the words-keys that

it is responsible to process. The first reducer outputs ⟨and, 1⟩, ⟨design, 2⟩,
⟨feels, 1⟩, ⟨how, 1⟩, ⟨is, 2⟩, ⟨it, 3⟩, ⟨just, 1⟩, ⟨like, 1⟩, ⟨looks, 1⟩. The
output of the second reducer is ⟨not, 1⟩, ⟨what, 1⟩, ⟨works, 1⟩.

When someone administers a cluster of computers, it is obviously more easy

and more secure to provide access to the machines via a MapReduce framework,

rather than set up a network topology for the specific user’s needs and grant

him/her with the necessary privileges to use it.

For fields like Constraint Programming, there may exist more efficient dis-

tributed architectures and environments, usually proprietary and unavailable to

experiment with. Nevertheless, MapReduce prevails as a standard in parallel/

distributed computation and this work is a step toward exploiting it and adapting

to it in order to solve Constraint Satisfaction Problems (CSPs).

3.2.2 Applications

MapReduce is an established framework to efficiently manage thousands of

processors to complete tasks in parallel, which would have finished in many days

in a sequential environment. For example, it has be used to explore social network

graphs [1, 40] and it has been effectively applied to mine medical information out

of large search engines logs [41].

There are many benefits of employing MapReduce.
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• A MapReduce system, like Hadoop for example, will allocate by itself the

CPU cores and/or the machines in a cluster of computers. There is no worry

to invoke the appropriate number of threads-workers or communicate with

other PCs to send them work.

• From the above, it is obvious that MapReduce supports both parallel and

distributed environments.

• It is more easy and secure for a cloud administrator to provide access to

their machines through a MapReduce interface, instead of allowing the

implementation of ad hoc communication strategies among the machines.

In some cases, there is no alternative except from adopting MapReduce.

• The no-communication between mappers restriction makes MapReduce

highly scalable and capable of utilizing huge data centers.

These are some of the reasons why we leverage on a plain MapReduce approach.

Constraint Programming has been employed to improve the coordination and

job scheduling for the dozens of mappers and reducers spread across many

processors and machines [63]. Nevertheless, our contribution focuses on how we

can employ MapReduce to boost Constraint Programming and not vice versa.

3.2.3 In the battle against the pandemic

The scalability of MapReduce enables scientists and organizations to process

terabytes of data coming from multiple sources in the pandemic era. The data

may refer to

• the genome of the viruses and the proteins produced by them [26]

• infection and fatality measurements across the globe [64]

• human behaviors such as social distancing in public areas.

For example, there is a surveillance system designed to massively process

live video streams from public areas and warn the citizens that do not keep the

minimum distance needed between them [59]. Other researchers use Hadoop

which is in turn based on MapReduce to process a large number of posts in social

media and extract opinions and sentiments related to the COVID-19 virus [30].

3.2.4 OR-parallelism vs. CSP partitioning

Constraint Programming independent search phase can be parallelized in

several fashions. In the so-called OR-parallelism the search space (tree) is

partitioned, and each processor-worker is assigned the task of exploring a specific

part. If the workers use different search methodologies, we have a portfolio

OR-parallelism [37].

On the other hand, there is another kind of parallelism where each processor

is responsible for a certain division of the CSP, i.e. a number of constraints or

variables, and it may check the validity of its constraints division or enforce a level

of consistency between its variables division. In this case, communication between

processors is unavoidable in order to ensure the whole CSP consistency [80].
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3.2.5 A MapReduce and CP combination and other related work

MapReduce is closer to OR-parallelism, as Mappers are not permitted to

communicate with each other. Régin et al. introduced MapReduceCP, the first
known MapReduce and Constraint Programming (CP) combination [78]. In rough

lines, they break up the search space into many pieces; the many fragments allow

the more balanced search space distribution over Mappers. The Reducers’ role in

MapReduceCP is trivial, as they simply “echo” the solutions from the Mappers.

Régin et al. showed that MapReduceCP is superior to work-stealing [21], a

dynamic search space partitioning schema implemented in Gecode [36], in which

each idle worker consecutively sends messages to other workers in order to

acquire a part of their current job.

Work-stealing is a non-MapReduce methodology that has a significant commu-

nication overhead between its workers, and this is something SelfSplit, another

parallel methodology, tries to mitigate [33]. SelfSplit deterministically labels the

search tree nodes with different “colors” (tags) without necessarily visiting them.

Afterwards, each worker is responsible to process only the nodes of a specific

color. The lack of communication between the workers has its ups and downs,

as if most of the nodes of the search tree are labeled “red” than “green,” then the

work to be shared will be unbalanced.

Apart from the MapReduce perspective, CSPs have been also viewed as

embarrassingly parallel problems [77, 79] by decomposing them into many smaller

CSPs. This is achieved by partitioning the search space, i.e. by splitting the

Cartesian product of the domains of the constrained variables.

3.2.6 Partitioning the search space

The normal MapReduce schema divides a large file into small pieces; each

piece is read by a Mapper. In CP we have not files but a search space, i.e. the

Cartesian product of the domains 𝐷1 × 𝐷2 × ⋯ × 𝐷𝑛.
Generally speaking, if the size of each domain 𝐷𝑖 is 𝑑, we can partition the

search space into 𝑑𝑚 different search spaces {𝑣1}×{𝑣2}×⋯×{𝑣𝑚}×𝐷𝑚+1×𝐷𝑚+2×⋯×𝐷𝑛,
where 𝑣𝑖 ∈ 𝐷𝑖.
Example 7. If we have a CSP with the variables 𝑋1, 𝑋2, 𝑋3, and 𝑋4, with the

corresponding domains 𝐷1 = 𝐷2 = 𝐷3 = 𝐷4 = {1, 2, 3}, i.e. 𝑑 = 3, we can partition
the search space into e.g. 𝑑2 = 9 divisions:

{1} × {1} × 𝐷3 × 𝐷4 {2} × {1} × 𝐷3 × 𝐷4 {3} × {1} × 𝐷3 × 𝐷4

{1} × {2} × 𝐷3 × 𝐷4 {2} × {2} × 𝐷3 × 𝐷4 {3} × {2} × 𝐷3 × 𝐷4

{1} × {3} × 𝐷3 × 𝐷4 {2} × {3} × 𝐷3 × 𝐷4 {3} × {3} × 𝐷3 × 𝐷4

In MapReduceCP this is how the search space is distributed over the Map-

pers [78]. This way of splitting the search space/tree is a top-down approach. For

example, in a complete binary search tree, if the tree is split in two parts, the top

two subtrees will be chosen. This seems to be an ideally balanced choice, as a
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Figure 3.1: An asymmetric LDS binary search tree

complete tree is symmetric, and its two top left and top right subtrees are equally

sized.

However, this is not always the case. Some search trees are unbalanced as

the one in Fig. 3.1. There are at least two reasons for this asymmetry:

• Either some nodes are nogood, that is they do not lead to a solution because

they violate a constraint, and there is no need to explore them further,

• or the search method is not complete and decides on purpose not to visit

every search tree node.

Limited Discrepancy Search (LDS) is an example of a constructive search method

that initially traverses a search tree like the one in the above figure [75].

In Chapter 5, our contribution will be to split any search tree (traversed by ad

hoc search methods) by predicting/simulating the search tree topology, without

actually traversing it. The generated partitions are then driven into a MapReduce

system, which is today widespread in modern cloud infrastructures.

3.3 Constraint propagation related work

At the beginning, given a specific CSP, one would normally like to make sure

if it has any solution or not. This information will be available only by using a

standard constructive search method. As, in the worst case, these methods may

exhaust all the candidate solutions of a CSP, it is important to make them more

intelligent and prune the search space.

Starting from the 70’s, the research on constraint propagation goes hand

in hand with Constraint Programming research [56, 92]. Throughout all these

years, there is a trend to invent stronger and stronger constraint propagation

methodologies.

There are propagation methodologies tailor-made for local search [68]. Never-

theless, the focus of constraint propagation research is on constructive search

methods.

3.3.1 Learning from mistakes or preventing them?

Look back techniques in backtracking search methods aim to avoid repeating

the invalid assignments of the past. Backjumping is a well-known look back
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technique, but it is not used in solvers, as other techniques clearly outperform it

even in simple CSPs [3]. Nogood learning is a more promising look back technique

that, based on the invalid assignments of the past, adds new constraints to avoid

the invalid combination of assignments in the future [89]. However, these new

constraints have the drawback of making the constraint network increasingly

complex.

On the other hand, look ahead techniques are more proactive in the sense that

they remove values out of the domains of the constrained variables before reaching

an inconsistent assignment. Maintaining arc consistency (MAC) during search is

the queen of all look ahead techniques [11]. According to MAC, each assignment

to a domain of a variable is followed by an arc consistency enforcement method,

such as the known optimal AC-2001 algorithm [12]. The optimality of AC-2001

was proven for enforcing arc consistency after a single assignment. But when we

call repeatedly AC-2001 during search, after each single assignment, in order to

maintain arc consistency, there is still room for improvements [54].

3.3.2 The importance of arc consistency

Arc consistency also plays a key role in splitting the CSPs into two large

categories [11].

1. The tractable ones that can be solved in polynomial time, simply by main-

taining arc consistency.

2. The intractable ones that are NP-complete problems and require an ex-

ponential backtracking algorithm to prove whether they have a solution or

not.

Related work has defined the properties of the constraint network that suffice to

categorize a CSP as tractable or intractable [24]. Furthermore, it has been recently

proven that a CSP is tractable only if it contains specific types of constraints [18,

102].

In our work, for the sake of simplicity, we consider arc consistency only for binary

constraints. The extension of arc consistency for constraints involving more than

two variables is called generalized arc consistency (GAC). Contrary to conventional

wisdom, there are studies that we can transform non-binary constraints into binary

ones and enforce plain AC to them without losing the efficiency of GAC [93].

3.3.3 Higher-level consistencies (HLCs)

Arc consistency filters many futile values out of the domains of the constrained

variables. But there are even stronger consistency levels than arc consistency.

These are the so-called higher-level consistencies (HLCs) and, while AC

examines one constraint at a time, HLCs consider two or more constraints simul-

taneously. This makes them too expensive to be used in practice [5]. To mitigate

the HLC overhead, there are hybrid strategies that go back and forth from HLC to

AC [98]. Even machine learning has been employed to dynamically choose which

consistency level is more efficient [4].
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Table constraints: A prominent field for HLCs

Binary CSPs are very useful for theoretical analysis, as they are defined simply

and every non-binary CSP can be converted into a binary one [81]. The analogue

for the constraints is the so-called table constraints, in the sense that they are

also simply defined, and every non-table constraint can be converted into a table

constraint.

A table constraint is nothing more than the literal statement of a constraint

as in Definition 1. For example, let the variables 𝑋 and 𝑌 have the domains

𝐷𝑋 = 𝐷𝑌 = {1, 2, 3, 4}. The constraint 𝑋 ≠ 𝑌 is an “implicit” constraint that can be
transformed into an “explicit” table constraint of the form (𝑋, 𝑌) ∈ {(1, 2), (1, 3), (1, 4),
(2, 1), (2, 3), (2, 4), (3, 1), (3, 2), (3, 4), (4, 1), (4, 2), (4, 3)}. Admittedly, the latter is
a clumsy way to state a constraint, not to mention the complexity overhead and

counterintuitiveness while implementing it as a computer software.

On the other hand, from a theoretical and mathematical point of view, table

constraints are a useful tool to group together every single kind of constraint. No

need to apply a different validation or revision function for the constraints 𝑋 ≠ 𝑌
and 𝑌 = 𝑍 + 5 for example.

There have been proposed tons of higher-level consistencies for table con-

straints in the bibliography [101]. Nevertheless, similarly to the binarization of

CSPs, the “tabularization” of constraints is seldom applied in practice.

Back and forth to HLCs

Furthermore, the higher-level consistencies (HLCs) themselves are rarely used

in practice for two main reasons.

• HLC methodologies require extra implementation effort in order to be used

in Constraint Programming solvers, and they are usually complicated.

• HLC is not only complex in terms of implementation, but it also costs in terms

of time. It is not a secret anymore that if we compare AC vs. HLCs for a wide

range of problems, AC is usually faster [86].

According to recent related works, the remedy to mitigate this unexpected

behavior is to employ an HLC instead ofAC on the fly, only under specific conditions.

In this context, Kostas Stergiou has classified all the so-called adaptive constraint

propagation methodologies into three categories: node, variable, and value-

oriented adaptive propagation [86].

Node-oriented adaptive propagation. While we traverse the search tree, node-

oriented adaptive propagation methods decide separately for each search tree

node if they are going to enforce arc consistency or another consistency level.

Variable-oriented adaptive propagation. While the AC vs. HLC decision in the

node-oriented adaptive propagation algorithms affects all the constrained variables

each time, the variable-oriented adaptive methodologies decide separately for

each variable the consistency level that this variable will have towards the other

variables.
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Value-oriented adaptive propagation. Finally, if we take a separate decision

for each value of each variable regarding which propagation algorithm we will use

in order to seek a support for it, then our adaptive methodology is classified as

value-oriented.

3.3.4 Toward more relaxed consistencies

In this work, we are moving toward the opposite direction, and instead of

inventing an HLC and then trying to enforce it in practice only under certain

conditions, we invest on bounds consistency (BC), a looser consistency level than

arc consistency (AC).

We do not change consistency levels on the fly. We stick to one consistency

level at a time (AC or BC) in order to keep the overall search algorithm that

maintains consistency as simple as possible. This enables us to shed a more

theoretical light to the integration of consistency into search and study the overall

consistency complexities, not isolated but always in the context of search methods

that maintain them. Our computations are backed by wide experimental data.

Instead of swapping HLCs and AC, we choose AC and BC, as bounds con-

sistency is naturally used to describe constraints in Constraint Programming

solvers [53].

3.3.5 Constraint propagation, validation, and explanation

It is almost never mentioned as it may seem trivial that constraint propagation

also serves the role of constraint validation. For example, when a search method

makes an assignment, constraint propagation attempts to prune as many nogood

values as possible out of the domains of the constrained variables. If a domain is

wiped out, then the assignment is considered invalid, and we have to proceed to

a different assignment.

But, before moving forward to a new assignment, one my ask the solver to

explain “why this assignment was proven invalid in the first place?” The answer

to this question is useful both to a human and to a search algorithm. The user is

informed which constraint fails, and if it fails frequently, the user may remove the

constraint or make it less hard. On the other hand, a search method can record

the explanation why a specific combination of assignments (e.g. 𝑋 ← 𝑎, 𝑌 ← 𝑏,
𝑍 ← 𝑐) causes a domain wipeout (due to specific constraints that connect them).
This can be a lesson learned for the search method, so as to avoid the same

assignment in the future [29].

Besides, the trend now in Artificial Intelligence is to make it explainable: the so-

called “XAI.” These days, intelligent algorithms play a key role into our lives. They

should not be black boxes and we need justifications behind their decisions. In this

context, the Inverse Constraint Programming has been recently introduced [50].

This framework does not just inform the user why a CSP cannot be solved, but it

also suggests the needed changes in the user’s requirements in order to get a

solution.

Furthermore, significant effort has been recently put into making the explana-

tions as much user-friendly as possible. As constraint propagation is frequently a
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big chain of steps and domain modifications, Bogaerts et al. defined the problem

of finding the minimal sequence of steps that led to a failure [13]. This is actually

an optimization problem by itself, to present to the user the smallest needed

information about the decisions taken.
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4. BRIDGING THE GAP: FROM RANDOM TO

DETERMINISTIC HEURISTICS

This is the essence of intuitive heuristics: when faced with a difficult

question, we often answer an easier one instead, usually without

noticing the substitution.

Daniel Kahneman, Thinking, Fast and Slow

4.1 New probabilistic heuristics

Our contribution lies in the mathematical foundation of a framework that covers

both deterministic and random heuristics in constructive search. In contrast

to existing methodologies, we leverage on the smooth transition from the total

randomness to determinism [71, 72].

4.1.1 Heuristic estimation as a real number

A heuristic function maps every possible choice in the search tree to a number

that corresponds to the estimation that it will eventually guide us toward a solution.

Definition 5. For a specific search tree node, let Choices be the set with the

alternative assignments that one may follow. The heuristic function ℎ𝑖 maps each
alternative assignment 𝑖 ∈ Choices to a positive number, i.e. ℎ ∶ Choices→ ℝ+.

Example 8. In Fig. 2.7 uppermost right node, there are two alternative assignments

in Choices = {𝑋2 ← 1, 𝑋2 ← 3}. One heuristic function may provide the estimations,
e.g. ℎ𝑋2←1 = 0.7 and ℎ𝑋2←3 = 2.8; that is, the assignment 𝑋2 ← 3 is more promising.

The above example is almost ideal, as the heuristic function ℎ favors the

assignment 𝑋2 ← 3 over 𝑋2 ← 1. Besides, the latter leads to a dead end, as its
two descendants are struck-out in Fig. 2.7, because they violate the constraints.

Unfortunately, this is not always the case, i.e. the heuristic value for an assign-

ment that leads to a dead end (say 𝑋2 ← 1 in Fig. 2.7) may be overestimated or,
even worse, may be greater than the heuristic estimation for an assignment that

really leads to a solution (e.g. 𝑋2 ← 3).
A heuristic value ℎ𝑖 is actually a prediction whether a specific assignment will

ultimately guide us to a solution or not. Being a prediction, it implies an inherent

reliability/confidence level.

In the above definition, we excluded negative values as the heuristic function’s

output. A negative heuristic evaluation could probably mean “do not make this
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Figure 4.1: Heuristic estimations ℎ𝑖 for each value 𝑣𝑖

choice at all.” But heuristics are normally used to favor one choice over another

and not to prune a choice. In any case, if we had a function ℎ with minℎ < 0, we
could transform it into ℎ′ = ℎ + |minℎ| to make it comply with the above definition.

4.1.2 Heuristics probabilistic foundations

Probabilities are a more precise way to depict heuristics than orderings, be-

cause heuristics are actually estimations whether a choice will guide us to a

solution; they are not a strict quality rank.

Definition 6. A function 𝑃 ∶ Choices → [0 , 1] , namely a heuristic distribution

function, maps each available choice to a corresponding probability, i.e. 𝑃(𝑖).

As in Definition 5 and the Example 8 that follows it, Choices may include all
the possible/candidate assignments to a constrained variable.

Property 1. It should hold that ∑𝑖 𝑃(𝑖) = 1, as 𝑃 denotes a probability for each

𝑖 ∈ Choices.

Regarding random search methods (Section 3.1.4), the probability is distributed

uniformly along the Choices. Conclusively,

Property 2. The heuristic distribution for a randommethod is always 𝑃(𝑖) = 1
|Choices| ,

∀ 𝑖.

Example 9. Say that Choices = {𝑣1, 𝑣2, … , 𝑣5}. Every 𝑣𝑖 denotes a possible assign-
ment. Furthermore, in a specific search tree node we can make five different

assignments, and their corresponding heuristic estimations ℎ𝑖 are 1, 5, 2, 4, 3
respectively, as in Fig. 4.1.

Figure 4.2 depicts the corresponding heuristic distribution function for a random

method, that is 𝑃(𝑖) = 1
5 , ∀ 𝑖.

On the other extreme, deterministic search methods (Section 3.1.3) always

select the choice 𝑣𝑖 that corresponds to the ℎ𝑖 with the highest rank.

Property 3. Formally, in deterministic search methods, if 𝑖 = argmax𝑗 ℎ𝑗, then
𝑃(𝑖) = 1, otherwise 𝑃(𝑖) = 0.

Example 10. The greatest heuristic value in Example 9 is ℎ2 = 5. Hence, a

deterministic search method would select 𝑣2 with a certain probability 𝑃(2) = 1.
Consequently, the rest of the probabilities are zero, as in Fig. 4.3.
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Figure 4.2: The probability is spread uniformly
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Figure 4.3: Systematic search favors the highest ℎ𝑖
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Figure 4.4: As conf rises, the effect to 𝑃(𝑖) is greater
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Without loss of generality, we assume that heuristic values are non-zero.

Furthermore, if there are more than one heuristic value equal to the maximum

heuristic value, deterministic methods arbitrarily consider only one of them as

maximum. To simplify the following equations, we will assume that there is only

one maximum. For formulas and proofs that are straightforwardly compatible with

two or more equal maximum heuristic values, see Section 4.1.4.

4.1.3 Bridging the two opposites

We extend our previous formulation of the heuristic distribution function (Defi-

nition 6) in order to compromise random and deterministic methods. We introduce

a parameter conf ∈ ℝ+, that signifies how much the heuristic estimations will be

taken into account; it is the heuristic’s confidence. This conf idence parameter is
the basis to define the condition when a heuristic distribution function is “balanced.”

Definition 7. A parameterized heuristic distribution function 𝑃conf (𝑖) is balanced if

and only if:

1. ∀ 𝑖, lim
conf→0

𝑃conf (𝑖) =
1

|Choices| , and

2a. if 𝑖 = argmax𝑗 ℎ𝑗, lim
conf→∞

𝑃conf (𝑖) = 1,

2b. otherwise, lim
conf→∞

𝑃conf (𝑖) = 0 .

Moreover, the function 𝑃conf (𝑖) must be monotonic and continuous with respect to
conf and for fixed 𝑖.

Intuitively, conf is the link between random and deterministic search methods,

as the above definition covers both Property 2 when conf → 0 and Property 3 when
conf → ∞. In other words, conf is the position along the random-deterministic
axis.

What happens for intermediate conf values? This depends on the precise

parameterized heuristic distribution function instance. We define the following

function that gradually scales randomness.

Lemma 1. The function 𝑃conf (𝑖) =
ℎconf𝑖

∑𝑗 ℎ
conf
𝑗

is balanced.1

Proof. We prove Definition 7 three requirements.

1. lim
conf→0

𝑃conf (𝑖) =
ℎ0𝑖
∑

𝑗∈Choices
ℎ0𝑗
= 1

∑
𝑗∈Choices

1 =
1

|Choices| .

2a. Let 𝑛 = |Choices|. This number is bounded as the possible assignments in
a CSP are a finite set. Thus, the distribution function can be analyzed as

𝑃conf (𝑖) =
ℎconf𝑖

∑𝑗 ℎ
conf
𝑗

=
ℎconf𝑖

ℎconf1 + ℎconf2 + ⋯ + ℎconf
max

+ ⋯ + ℎconf𝑛

.

1For conf = 1, the function 𝑃1(𝑖) =
ℎ𝑖
∑𝑗 ℎ𝑗

is equivalent to the fitness proportionate selection

function—resembling a roulette wheel—that is used in Genetic Algorithms [84].
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Let ℎ
max

be the maximum ℎ𝑖. If we divide by ℎ
conf
max

both the nominator and

denominator, we have

𝑃conf (𝑖) =
( ℎ𝑖
ℎmax

)
conf

( ℎ1
ℎmax

)
conf

+ ⋯ + 1 + ⋯ + ( ℎ𝑛
ℎmax

)
conf

=
( ℎ𝑖
ℎmax

)
conf

1 + ∑𝑗≠max (
ℎ𝑗
ℎmax

)
conf

. (4.1)

Here, max is an abbreviation for argmax𝑖 ℎ𝑖. Therefore, ∀ 𝑗 ≠ max,

ℎ𝑗 < ℎmax ⇒
ℎ𝑗
ℎ
max

< 1 ⇒

lim
conf→∞

(
ℎ𝑗
ℎ
max

)
conf

= 0 . (4.2)

As a result from (4.1) and (4.2),

lim
conf→∞

𝑃conf (𝑖) =
limconf→∞ (

ℎ𝑖
ℎmax

)
conf

1 + ∑𝑗≠max limconf→∞ (
ℎ𝑗
ℎmax

)
conf

= lim
conf→∞

(
ℎ𝑖
ℎ
max

)
conf

. (4.3)

A direct derivation of the above is that for 𝑖 = max ≡ argmax𝑗 ℎ𝑗, we have
limconf→∞ 𝑃conf (max) = 1, which is the second prerequisite for a balanced
function.

2b. Finally, the last prerequisite of Definition 7 involves 𝑖 ≠ max⇒ ℎ𝑖 < ℎmax ⇒
ℎ𝑖
ℎmax

< 1, which, combined with (4.3), gives limconf→∞ 𝑃conf (𝑖) = 0, which had
to be demonstrated.

The above function in Lemma 1 is balanced, and it also moves smoothly from

the random extreme to the deterministic one, because it is a continuous function,

with regard to conf ∈ ℝ+.
Hence, the overall function is a transition from the total randomness to the

almost total determinism. This is illustrated in the three-dimensional Fig. 4.4, which

for conf = 0, is equivalent to the two-dimensional Fig. 4.2, and when conf →∞, it

is equivalent to Fig. 4.3.
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4.1.4 Balanced heuristic distribution for two or more maximum heuristic

values

This section is a restatement of the definition and proof of the previous section,

for the case that there are 𝑚 equal maximum heuristic values with 𝑚 > 1.

Definition 8. We denote the set containing the indexes of the heuristic values

with maximum values as 𝑀 = {𝑖 | ℎ𝑖 =ℎmax}, where ℎmax is the maximum heuristic

value. Also, by definition, |𝑀| = 𝑚.

Definition 9. A parameterized heuristic distribution function 𝑃conf (𝑖) is balanced if

and only if:

1. ∀ 𝑖, lim
conf→0

𝑃conf (𝑖) =
1

|Choices|
, and

2a. if 𝑖 ∈ 𝑀, lim
conf→∞

𝑃conf (𝑖) =
1
𝑚
,

2b. otherwise, lim
conf→∞

𝑃conf (𝑖) = 0 .

Moreover, the function 𝑃conf (𝑖) must be monotonic and continuous with respect to
conf and for fixed 𝑖.

Lemma 2. The function 𝑃conf (𝑖) =
ℎconf𝑖

∑𝑗 ℎ
conf
𝑗

is balanced.

Proof. We prove the three requirements of Definition 9.

1. lim
conf→0

𝑃conf (𝑖) =
ℎ0𝑖
∑

𝑗∈Choices
ℎ0𝑗

= 1
∑

𝑗∈Choices
1
= 1
|Choices|

.

2a. Let 𝑛 = |Choices|. This number is bounded as the possible assignments in
a CSP are a finite set. Thus, the distribution function can be analyzed as

𝑃conf (𝑖) =
ℎconf𝑖

∑𝑗 ℎ
conf
𝑗

=
ℎconf𝑖

∑𝑗∈𝑀 ℎ
conf
𝑗 + ∑𝑗∉𝑀 ℎ

conf
𝑗

.

Let ℎ
max

be the maximum ℎ𝑖. If we divide by ℎ
conf
max

both the nominator and

denominator, we have

𝑃conf (𝑖) =
( ℎ𝑖
ℎmax

)
conf

∑𝑗∈𝑀 (
ℎ𝑗
ℎmax

)
conf

+ ∑𝑗∉𝑀 (
ℎ𝑗
ℎmax

)
conf

. (4.4)

From the Definition 8 it holds that for each 𝑗 ∈ 𝑀, ℎ𝑗 = ℎmax. Therefore

∑
𝑗∈𝑀

(
ℎ𝑗
ℎ
max

)
conf

= ∑
𝑗∈𝑀

(
ℎ
max

ℎ
max

)
conf

= ∑
𝑗∈𝑀

1 = 𝑚. (4.5)
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Furthermore, for each 𝑗 ∉ 𝑀,

ℎ𝑗 < ℎmax ⇒
ℎ𝑗
ℎ
max

< 1 ⇒

lim
conf→∞

(
ℎ𝑗
ℎ
max

)
conf

= 0 . (4.6)

As a result from (4.4), (4.5), and (4.6),

lim
conf→∞

𝑃conf (𝑖) =
limconf→∞ (

ℎ𝑖
ℎmax

)
conf

𝑚 + 0

= 1
𝑚

lim
conf→∞

(
ℎ𝑖
ℎ
max

)
conf

. (4.7)

A direct derivation of this is that for 𝑖 ∈ 𝑀, we have

lim
conf→∞

𝑃conf (𝑖) =
1
𝑚

lim
conf→∞

(
ℎ
max

ℎ
max

)
conf

= 1
𝑚

which is the second prerequisite for a balanced function.

2b. Finally, the last prerequisite of Definition 9 involves 𝑖 ∉ 𝑀 ⇒ ℎ𝑖 < ℎmax ⇒
ℎ𝑖
ℎmax

< 1, which, combined with (4.7), gives limconf→∞ 𝑃conf (𝑖) = 0, which had
to be demonstrated.

Furthermore, our initial goal was to propose flexible heuristics which perform

better than purely deterministic or purely stochastic ones. To implement and

measure the transition from randomness to determinism, we just introduced a

confidence value. However, new questions now arise. Which conf value should
be used? Which is the best way to bind the proposed hybrid heuristics to search

processes?

4.2 Piece of Pie Search

Heuristics are not completely autonomous on themselves. Their usage is

meaningful only in the context of search methods. Search methods consult/call

heuristic functions and not the opposite. In order to fully exploit the introduced

heuristics framework, we built the new constructive search method Piece of Pie

Search (PoPS).

4.2.1 The algorithm’s core

Figure 4.5 describes PopsSample, which is the PoPS core. It is called inside

PoPS in order to solve a CSP by providing a complete and valid Assignments
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set, which is initially empty. For the sake of simplicity, we consider that the value

conf = 100 represents infinity or, more formally, the maximum conf value. In fact,
before “hard-coding” this value we should consider the heuristic function itself

which, in turn, depends on the CSP that is used for and then probably change this

“100” value.
In each PopsSample call we get an unassigned variable returned by the function

VarıablesOrderHeurıstıc(X ) where X is the set of all the constrained variables.

For example, if this function implements the fail-first heuristic, it will return the

variable 𝑋 having the minimum |𝐷𝑋| with |𝐷𝑋| > 1.
The next step is to store its 𝐷𝑋 domain in order to restore it in a future backtrack.

All the above steps are common in constructive search methods.

The crucial and novel part of this function is inside the while iteration where

we go through the different values in 𝐷𝑋. The ValuesOrderHeurıstıc(𝐷𝑋, conf) call
returns a value out of 𝐷𝑋 using the heuristic function in Lemma 1.

Normal search methods, like Depth First Search (DFS), Limited Discrepancy

Search (LDS), and other known deterministic methods explore in their steps

a specific number of values in 𝐷𝑋 or every value in it (cf. Section 3.1.3). In

PopsSample, we explore a specific subset 𝐷′𝑋 of 𝐷𝑋, which corresponds to a

proportion of the heuristics pie. The proportion is the argument PieceToCover ∈
[0, 1]. When PieceToCover is 1, PopsSample becomes a complete search method
as it explores all the 𝐷𝑋 set values.
Example 11. Figure 4.6 demonstrates the heuristics-probabilities pie for the Exam-

ple 9: Each 𝑃(𝑖) corresponds to a value 𝑣𝑖 in 𝐷𝑋. In this case, a PopsSample(0.5, 1)
invocation would explore at least half the pie. E.g., the choices that correspond to

the heuristics 𝑃(1) + 𝑃(2) + 𝑃(3) or 𝑃(2) + 𝑃(5) make half the pie and more.
A more detailed step by step explanation follows.

• We are inside the while loop of a PopsSample(0.5, 1) call.

• CoveredPiece is initially 0; the loop stops when CoveredPiece exceeds 0.5.

• ValuesOrderHeurıstıc(𝐷𝑋, 1) is called.

• According to Example 9, the above function call will return a value out of

{𝑣1, 𝑣2, 𝑣3, 𝑣4, 𝑣5}.

• Each value 𝑣𝑖 has been evaluated with a heuristic value ℎ𝑖.

• The ℎ𝑖 function may implement for example the so-called least constraining
value (LCV) heuristic. Any heuristic function ℎ𝑖 can be used.

• Let us use the indicative values ℎ1 = 1, ℎ2 = 5, ℎ3 = 2, ℎ4 = 4, and ℎ5 = 3.

• The probability that 𝑣𝑖 is selected by ValuesOrderHeurıstıc is 𝑃(𝑖), which is
calculated using the above evaluations together with Lemma 1.

• Thus, the respective probabilities are 𝑃(1) = 0.07, 𝑃(2) = 0.33, 𝑃(3) = 0.13,
𝑃(4) = 0.27, and 𝑃(5) = 0.20.

• Again, all the above are probabilities (𝑃(𝑖)) of the event that a specific value
(𝑣𝑖) will be selected. Therefore, every value can be selected in each iteration.
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function PopsSample(PieceToCover, conf)
arguments:

PieceToCover: The proportion of the heuristics’ pie to be explored
conf: A “confidence” value between 0 and 100

local variables:

Assignments: set with all the assignments made until this call
X : set with all the constrained variables (bound and unbound)

𝑋: constrained variable that is going to be instantiated
value: value that is going to be assigned
ℎ𝑋←𝑣: heuristic value for the assignment 𝑋 ← 𝑣
𝐷𝑋init: initial domain of 𝑋, before any assignment was made
𝐷𝑋: current domain of 𝑋
CoveredPiece: current covered proportion of the pie

if Assignments violate any constraint then
return failure

else if Assignments include every variable then
Record Assignments as solution
return success

end if

𝑋 ← VarıablesOrderHeurıstıc(X )
𝐷𝑋init ← 𝐷𝑋
CoveredPiece← 0
while CoveredPiece ≤ PieceToCover do

value← ValuesOrderHeurıstıc(𝐷𝑋, conf)

CoveredPiece← CoveredPiece + ℎconf𝑋←value

∑𝑣∈𝐷𝑋init
ℎconf𝑋←𝑣

Assign value to 𝑋 and add it to Assignments
if PopsSample(PieceToCover, conf+ 100−conf|X |−1 ) then

return success

end if

Undo the assignment

𝐷𝑋 ← 𝐷𝑋 − {value}
end while

𝐷𝑋 ← 𝐷𝑋init ▷ Restores initial domain

return failure ▷ All alternative values are exhausted

end function

Figure 4.5: The recursive PopsSample called by PoPS
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𝑃(1)

𝑃(2)

𝑃(3)

𝑃(4)
𝑃(5)

Figure 4.6: The heuristics-probabilities pie chart for Example 9

• Suppose that 𝑣5 is selected at the first iteration with 𝑃(5) = 0.20.

• This probability is also used to increase the current CoveredPiece, which

becomes 0.20 too.

• 𝑋 is assigned 𝑣5.

After the assignment, PopsSample(0.5, 1 + 99
|X |−1) is called. Please note the

increase of the conf value. This recursive call will choose another variable out
of X and enter the while loop again. This loop will try to assign a value to the

new variable from its domain. If all the attempts inside the iteration of the new

recursive call fail, we continue back to the first while loop, which was described in

the above bullets.

• The assignment of 𝑣5 to 𝑋 is undone, 𝑣5 is removed from the domain, and

another iteration begins.

• We proceed to the second iteration, as the PieceToCover (0.5) is still greater
or equal than the CoveredPiece (0.2).

• Let us say that 𝑣2 is then chosen by ValuesOrderHeurıstıc with a 𝑃(2) = 0.33
probability.

• CoveredPiece now equals 0.20 + 0.33 = 0.53.

Then, PopsSample(0.5, 1 + 99
|X |−1 ) is called. Again, if all the attempts in the iteration

of the new call to instantiate the next variable fail, we step back to the first while

loop:

• The assignment of 𝑣2 to 𝑋 is undone.

• We proceed to the third iteration.

• Nevertheless, CoveredPiece (0.53) is now greater than PieceToCover (0.5).

• More than half of the pie of the choices for 𝑋 has been already explored; no
other alternatives are examined.
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𝑃(1)

𝑃(2)

𝑃(3)

𝑃(4)

𝑃(5)

Figure 4.7: The previous heuristics-probabilities pie chart when conf = 2

• The rest of the values 𝑣1, 𝑣3, 𝑣4 are left unused/unexplored. This makes
PopsSample an incomplete search method, as it may override a solution

(which involves for example these values) for the sake of speed.

LDS is a search method which, in each search tree node, explores only a

limited number of the available choices. The difference with our method is that

we may explore a limited proportion of the heuristics pie of choices, which makes

our method more “heuristics-aware.” This means that the number of the explored

choices by our method in a specific nodemay vary, depending on how the heuristics

pie is distributed to the choices. On the other hand, LDS explores a fixed number

of choices, independently of the heuristics pie distribution.

It is worth noting that while more variables get instantiated, the conf value
gradually increases. Besides, heuristic estimations tend to be more reliable when

we have less unassigned variables.

Example 12. We will consider the above Example 11 for a PopsSample(0.5, 2) call,
i.e. for conf = 2.

According to Lemma 1, the probabilities for conf = 2 are computed as 𝑃(𝑖) =
ℎ2𝑖
∑𝑗 ℎ

2
𝑗
. For example, 𝑃(1) = ℎ21

∑𝑗 ℎ
2
𝑗
= 12
12+52+22+42+32 = 0.02. The other probabilities are

𝑃(2) = 0.45, 𝑃(3) = 0.07, 𝑃(4) = 0.29, and 𝑃(5) = 0.16. Thus, the pie is redistributed
as in Figure 4.7.

While the conf value increases, the value 𝑣2 which had initially the greatest
heuristic evaluation ℎ2 is even more likely to be selected, as 𝑃(2) increases too. In
other words, we get closer to total determinism and closer to complete confidence

in the highest heuristic evaluation: In total determinism (in systematic search) 𝑣2
would have been always selected with a certain probability 1.

4.2.2 Heuristic confidence vs. node level

An important detail in PopsSample appearing in Fig. 4.5, is the increase in conf
as the current search tree node level deepens.

When we make the first recursive PopsSample call (inside while), we have
already made an assignment. Hence, the current tree level will be augmented by
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1 and conf will be increased by 100−conf
|X |−1 .

Each subsequent recursive call deepens search by one level, until the current

depth reaches |X |, which means that every variable in X has been assigned a

value. For a specific depth 𝑘 the conf value is increased by (𝑘 − 1)100−conf|X |−1 . Finally,

when 𝑘 = |X |, the conf argument of PopsSample will become equal to the value
100.

The following is not guaranteed, but in the deepest node levels, heuristics are

usually more accurate, because more variables have been instantiated, and we

have a clearer picture of the problem. In our framework, more accuracy means

more confidence, that is why we increase conf as the search method proceeds
with the assignments.

4.2.3 POPSSAMPLE average complexity

The PopsSample complexity depends on PieceToCover argument and the

heuristic function distribution.

Lemma 3. Let 𝑛 be the constrained variables number and let 𝑑 be the average

domain size. Then, the average complexity of a PopsSample(PieceToCover, conf)
call is 𝑂(𝑑𝑛 ⋅ PieceToCover𝑛).

Proof. An initial PopsSample(PieceToCover, conf) call iterates through the values
of, let us say, the first variable 𝑋1. If the heuristic function numbers for the values
in 𝐷𝑋1 are uniformly distributed, the expected value for ℎ𝑋1←value would be 𝜇 =
∑𝑣∈𝐷𝑋1

ℎ𝑋←𝑣

|𝐷𝑋1|
.

Thus, to reach the pie proportion 𝐴 = PieceToCover ⋅ ∑𝑣∈𝐷𝑋 ℎ𝑋←𝑣, we need

𝐴/𝜇 = PieceToCover ⋅ |𝐷𝑋1| iterations, i.e. 𝑂(PieceToCover ⋅ 𝑑) loops.
The total time needed is 𝑇1 = 𝑂(PieceToCover ⋅ 𝑑) ⋅ 𝑇2, where 𝑇2 is the time for

the PopsSample call inside the loop. It also holds that 𝑇2 = 𝑂(PieceToCover ⋅ 𝑑) ⋅ 𝑇3,
etc., and finally 𝑇𝑛 = 𝑂(PieceToCover ⋅ 𝑑). In conclusion, the aggregate complexity
is 𝑂(PieceToCover𝑛 ⋅ 𝑑𝑛) for the initial call.

We can observe that PopsSample(1, conf) is equivalent to a complete search
space exploration, which has an 𝑂(𝑑𝑛) time complexity.

4.2.4 The motivation behind POPS

Finding the best conf is the motivation behind PoPS. Unfortunately, we do not
know a priori which conf is the best parameter for PopsSample. However, we can
find it by trial and error. In Fig. 4.8, the PoPS function invokes PopsSample for
SamplesNum different conf 𝑖 values, including the values 0 and 100.

Each different conf 𝑖 is used in turn. Initially, the Cover𝑖 parameter in the PoPS
algorithm is zero for every conf 𝑖. When a specific conf 𝑖 has been examined,

the corresponding Cover𝑖 is increased by
1
𝑑 , where 𝑑 is the average domain size.

When the second iteration over a specific conf 𝑖 ends, the Cover𝑖 is increased
again by 1

𝑑 and so on.
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function PoPS
local variables:

SamplesNum: how many different conf values are initially employed
conf 𝑖: array with all the initially employed conf values
Sample𝑖: a Boolean array; if its 𝑖

th element is deactivated (false) the

corresponding conf 𝑖 value is currently ignored
Cover𝑖: corresponding “piece to cover” argument for PopsSample call
𝑑: average domain size of the constrained variables

for 𝑖 from 1 to SamplesNum do

Sample𝑖 is activated
Cover𝑖 ← 0
conf 𝑖 ← 100 ⋅ 𝑖−1

SamplesNum−1
end for

while the available time is not exhausted do

for each active Sample𝑖 do
if PopsSample(Cover𝑖, conf 𝑖) did not return a solution then

Sample𝑖 is deactivated
end if

Cover𝑖 ← Cover𝑖 +
1
𝑑

end for

if every Sample𝑖 is deactivated then
Activate every Sample𝑖 ▷ to keep searching.

end if

end while

end function

Figure 4.8: Piece of Pie Search (PoPS) Method
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In this way, each conf 𝑖 is given the same opportunity (search space) to find
a solution. If some conf 𝑖 does not produce a solution, it is deactivated. It is

reactivated only if all other conf 𝑖’s fail to produce a solution.

4.3 Empirical evaluations

The gradual switch from randomness to determinism can boost search in

demanding CSPs, such as course scheduling and the radio frequency assignment

problems. With the help of our free constraint programming C++ library Naxos
Solver [67], we solved official instances of these problems for different heuristic
distribution configurations.

The source code for our evaluations is freely available, including the problem

datasets.2 The experiments were conducted on an HP computer with an Intel dual-

core E6750 processor clocked at 2.66GHz with 2GB of memory and a Xubuntu

Linux 12.04 operating system.

In the following three subsections (4.3.1, 4.3.2, 4.3.3) the experiments are

repeated for different conf values, as we do not use PoPS. On the other hand,
in the last subsection 4.3.4, PoPS automatically chooses by itself the employed

conf values.

4.3.1 University course scheduling

Automated timetabling is nowadays a crucial application, as many educational

institutions still use ad hoc manual processes to schedule their courses. The

International Timetabling Competition (ITC) is an attempt to unify all these pro-

cesses. We borrowed the fourteen instances of the contest track concerning

universities [58].

In these problems, we have to assign valid teaching periods and rooms to

the curriculum lectures. The objective is to distribute them evenly during the

week but without having gaps between them, if scheduled on the same day; each

gap increases the solution cost [74]. As variable ordering heuristic, we used

minimum remaining values and degree for tie breaking, and we randomized it

using the function in Lemma 1. Least constraining value was used as value

ordering heuristic.

Due to the ITC specifications, we had 333 seconds in our machine to solve

each instance and minimize the solution cost as much as we could. Figures 4.9

and 4.10 display the minimum solution costs found per instance for various conf
values. We observe that as conf increases the costs tend to a specific number,
whilst for small conf values we have fluctuations because search becomes more
random.

It was expected that for high conf values the results would be more stable,
as the search process approximates the default depth-first-search (DFS). For

the marginal low values, e.g. conf = 0, search is completely stochastic and the
results are worse on average, as we have higher solution costs. Nevertheless,

the evaluations for intermediate conf values, e.g. conf ≈ 20, are more promising.
2http://di.uoa.gr/~pothitos/PoPS
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Figure 4.9: Timetabling solutions costs vs. conf
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Figure 4.10: Solutions for the rest of the ITC instances
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Remember that an intermediate conf value favors the selection which corresponds
to the best heuristic evaluation, but it also gives room to other selections (the

“outsiders”) as their probabilities are not zero.

The automatic selection of the best conf is an open question here; in Sec-

tion 4.3.4, PoPS finds automatically the best conf values.
In practice, as shown in Fig. 4.9 and 4.10, a conf value around 100 actually

represents infinity, because search tends to produce the same solutions for conf ≥
100.

It is worth to mention that in Fig. 4.10 the only solution found for the Let0405-1
instance, depicted with an asterisk ∗, was for an intermediate conf = 10.

4.3.2 Radio link frequency assignment

Another important real problem is the frequency assignment, in which we have

to assign a frequency to each radio transmitter with the objective to minimize the

interference. The interference is minimized by assigning different frequencies to

every two transmitters that are close to each other.

The Centre Electronique de l’Armement (CELAR) provides a set of real datasets

for this NP-hard problem [19]. We chose to solve the five so-called “MAX” prob-

lem instances, namely SCEN06–SCEN10, in which, generally speaking, we try

to maximize the number of the satisfied soft constraints. Similarly to the above

course scheduling experiments, as variable ordering heuristic we used minimum

remaining values and degree for tie breaking, and we randomized it using the

function in Lemma 1. No special value ordering heuristic was employed: the

lexicographical order of the values was kept while iterating through them.

For each of these instances, we had 15 minutes to explore the search space.

We recorded the best (lowest) solution costs found so far in Fig. 4.11 for several

conf values. Approximately the same as in course scheduling, the lowest solu-
tion costs occur around conf ≈ 10, which gives better results on average than
the marginal conf values. This means that we achieve best results when the

confidence to our heuristic is neither too high nor very low.

4.3.3 POPSSAMPLE during hard optimization

The conf parameter can refine any search method that adopts our heuristic
framework. The PopsSample method goes a step further: it incorporates our

heuristic confidence semantics into its search engine.

In order to solve the first university course timetabling instance (Fis0506-1 of
Section 4.3.1), we invoked PopsSample for various PieceToCover and conf values
and we plotted the best solution costs found in Figure 4.12. The third dimension is

the cost of the solutions found: the lower the solution cost is, the more qualitative

timetable is produced.

In the same graphs, we include some of the well-known search methods

results, such as DFS, LDS, and Iterative Broadening, implemented in the same

solver, with only their best solution cost depicted as a plane grid, in order to make

comparisons easily.
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Figure 4.11: Unsatisfied soft constraints increase cost
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Figure 4.12: PopsSample for the first ITC instance

4.3.4 POPS vs. other search methods

In the above section, it was not easy to figure out the best PieceToCover and
conf combination. In order to find it, we have to search by hand the lowest point
in the three-dimensional PieceToCover vs. conf vs. Cost graph.

Now we employ PoPS to automatically seek for the best PieceToCover and
conf combination while solving the fourteen course timetabling instances. For
each instance, we have now just one solution as in Table 4.1.

As described in Section 4.2.4, PoPS uses several conf values and favors the
most fruitful ones. We used five conf samples, i.e. 0, 25, 50, 75, and 100, by
setting SamplesNum equal to 5. In this way, PoPS constructed solutions with

lower costs than the other methods, except for the fifth instance, as illustrated in

Table 4.1.

In this section, we used least constraining value as ValuesOrderHeurıstıc,
and we randomized it using the function in Lemma 1. The time limit for all the

methods was set to 15 minutes.

4.4 Conclusions

In this chapter, a new hybrid heuristic was defined. It has a confidence pa-

rameter to smoothly traverse from total determinism to total randomness. This

heuristic can be adopted by any search method.

Additionally, this chapter introduced a new PopsSample search method. This
method efficiently exploits the proposed hybrid heuristic, as it increases the confi-

dence parameter while descending to the leaves of a search tree.
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Table 4.1: Solution costs for fourteen ITC instances

Instance PoPS LDS DFS It. Broad.

Fis0506-1 105 171 345 286
Ing0203-2 241 288 698 321
Ing0304-1 279 307 578 353
Ing0405-3 195 215 817 235
Let0405-1 655 627 X X

Ing0506-1 307 311 812 342
Ing0607-2 282 283 1184 328
Ing0607-3 223 239 635 262
Ing0304-3 288 294 675 370
Ing0405-2 265 284 877 344
Fis0506-2 12 33 486 34
Let0506-2 713 783 1621 937
Ing0506-3 231 256 660 280
Ing0708-1 223 227 660 264

Finally, a new parameter-free PoPS search method is repeatedly calling

PopsSample with various values of its parameters and favors the values that

produce the best results.

The efficiency of all the above has been illustrated in difficult real-world opti-

mization CSPs.
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5. CONSTRAINT PROGRAMMING MAPREDUCE’D

The world is one big data problem. There’s a bit of arrogance in that,

and a bit of truth as well.

Andrew McAfee, MIT

Search trees in Constraint Programming are a fertile ground for parallelization.

However, it is difficult to propose a global parallelization schema, due to the great

Constraint Satisfaction Problems (CSPs) variety and the plethora of the sequential

search methods that are available to solve a CSP. In this chapter, we exploit

a sequential search methods framework to make an arbitrary search method

parallel by simulating its sequential execution. We record the visited search tree

parts and then try to restore them on different Mappers-workers in a MapReduce

installation [70].

5.1 Optimal search tree partitioning

Parallel search can benefit from splitting the search tree into equal parts. The

most secure way to fairly split a search tree would be to traverse all of its nodes

sequentially and record the elapsed real time when each node was visited. Then,

we would divide the total time with the available workers number. Each time slice

would be identified by two nodes: a start and an end node.

Take for example the tree in Fig. 5.1. Table 5.1 contains indicative times when

the visit to each node was completed. It could be the real time in microseconds

elapsed from the beginning of search. The visit to each node 𝑛𝑖 (first row of the

table) takes some time 𝑑𝑖 (third row of the table). If we set 0 as the wall clock time
when the visit to 𝑛1 started, we start visiting node 𝑛𝑖 when the wall clock time is

𝑛1

𝑛2 𝑛8

𝑛3 𝑛6 𝑛9

𝑛4 𝑛5 𝑛7 𝑛10

Figure 5.1: A search tree example
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Table 5.1: The time when each node is visited sequentially

Node 𝑛1 𝑛2 𝑛3 𝑛4 𝑛5 𝑛6 𝑛7 𝑛8 𝑛9 𝑛10
Time visited 2 4 5 10 13 18 21 22 25 27
Duration 2 2 1 5 3 5 3 1 3 2

𝑛1..𝑛10 Solver
process time=27

Solutions in

nodes 𝑛1..𝑛10

Figure 5.2: A sequential traversal finds all the solutions

equal to ∑𝑖−1𝑘=1 𝑑𝑘. The wall clock time needed to explore the whole search tree is
∑10𝑘=1 𝑑𝑘. These aggregate times are illustrated in the second row of the table.

If we have 3 available workers to explore the above nodes, it would be better
to divide the set of nodes into three almost equivalent parts. The desired duration

for each part would be 27/3 = 9 seconds. Hence, the ranges 𝑛1..𝑛4 and 𝑛5..𝑛6
and 𝑛7..𝑛10 are almost equivalent, as they have the respective durations of 10, 8,
and 9 seconds.

The aforementioned three parts of the search tree do not have any topological

meaning; for example, they do not form three subtrees. The meaning of our

partition is plainly chronological. For the first time, the search tree is not partitioned

with a top-down approach; we focus directly on the factor of time.

𝑛1..𝑛4

𝑛5..𝑛6

𝑛7..𝑛10

Solver
process time=10

Solver
process time=8

Solver
process time=9

Solutions

in 𝑛1..𝑛4

Solutions

in 𝑛5..𝑛6

Solutions

in 𝑛7..𝑛10

Solutions

in 𝑛1..𝑛10

Figure 5.3: A parallel traversal of the tree by three Solvers

A sequential search method takes 27 time periods to traverse the whole search

tree 𝑛1..𝑛10, as in Fig. 5.2. If we had three workers to traverse the above three
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splits (𝑛1..𝑛4, 𝑛5..𝑛6, 𝑛7..𝑛10) in parallel, in three different processors or cores, it
would take only 10 periods, as in Fig. 5.3.

Note that the ranges 𝑛
start

..𝑛
end

that are the input for the Solvers are simply the

IDs for two tree nodes and nothing more. In practice, the 𝑛
start

..𝑛
end

is a line in a

text file, read by the Solver. But how can we encode a node into a text file?

5.2 Encoding a search tree node into an array of integers

The mechanism that searches for a solution in a Constraint Programming

solver is a complex one as it has to support ad hoc customized search methods,

as Naxos Solver does [72]. For the sake of simplicity, we will focus on a single
generic search method and not the whole search methods placeholder.

The following DfsVarOrdHeur recursive function is the backtracking search
method Depth First Search, originally introduced in Fig. 2.4 as DFS. The difference
is that DfsVarOrdHeur is more generic in the sense that it employs a dynamic
variables ordering heuristic in contrast to DFS which has a static variables ordering.
Furthermore, it aims to output every solution.

function DfsVarOrdHeur(ℓ)
▷ The method reached the search tree level ℓ
𝑋 ← VarıablesOrderHeurıstıc(X )
𝐷𝑋init ← 𝐷𝑋
for each 𝑣 ∈ 𝐷𝑋init do

𝐷𝑋 ← {𝑣} ▷ Assign 𝑣 to 𝑋
if no constraint is violated then

▷ Proceed to the next variable/level:

if ℓ = 𝑛 then
Print solution

else

DfsVarOrdHeur(ℓ + 1)
end if

end if

end for

𝐷𝑋 ← 𝐷𝑋init
return failure

end function

DfsVarOrdHeur aims, when called as DfsVarOrdHeur(ℓ) and ℓ − 1 variables have
already been evaluated, to assign a value to the ℓ-th variable (chosen by the

heuristic) and then call itself to evaluate the rest variables. To solve a CSP, we

initially call DfsVarOrdHeur(1). We are going to modify the above search method

and give it the possibility to

• identify the node that is currently exploring and store it as a Sibling integer
array,

• start exploring the search tree directly from a node described using a

SiblingStart array, and
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• terminate search when it visits a node identified as a SiblingEnd array.
The following DfsPart function integrates all the above features by adding the
lines 4–16 to the original DfsVarOrdHeur function.

1: function DfsPart(ℓ, Sibling, SiblingStart, SiblingEnd)
2: 𝑋 ← VarıablesOrderHeurıstıc(X )
3: 𝐷𝑋init ← 𝐷𝑋
4: Sibling[ℓ] ← 0
5: for each 𝑣 ∈ 𝐷𝑋init do
6: Sibling[ℓ] ← Sibling[ℓ] + 1
7: if ℓ ≤ |SiblingStart| then
8: if Sibling[ℓ] < SiblingStart[ℓ] then
9: continue

10: else if Sibling[ℓ] = SiblingStart[ℓ] then
▷We found the starting sibling number!

▷ Nullify SiblingStart for current level:
11: SiblingStart[ℓ] ← 0
12: end if

13: end if

14: if Sibling = SiblingEnd then
▷ All the items of the two arrays are equal

15: terminate execution

16: end if

17: 𝐷𝑋 ← {𝑣}
18: if no constraint is violated then

19: if ℓ = 𝑛 then
20: Print solution

21: else

22: DfsPart(ℓ + 1, Sibling, SiblingStart, SiblingEnd)
23: end if

24: end if

25: end for

26: 𝐷𝑋 ← 𝐷𝑋init
27: return failure

28: end function

Figure 5.4 is an example of a search tree parsed by DfsVarOrdHeur. On top
of each node 𝑛𝑖 which is on level ℓ there is a number denoting Sibling[ℓ]: the serial
number of the sibling that is implemented in DfsPart.

The path toward each 𝑛𝑖 is unique and can be represented by the Sibling array
in a unique way. For example, 𝑛1 is represented by [1], 𝑛2 is represented by [1, 1],
𝑛3 by [1, 1, 1], 𝑛4 by [1, 1, 2], 𝑛5 by [1, 2], and so forth.
DfsPart is capable to partially explore the tree by restoring an 𝑛

start
node and

continuing the tree traversal until it meets a given 𝑛
end

node. The two bound-

ary nodes 𝑛
start

and 𝑛
end

are represented by the SiblingStart and SiblingEnd
arguments of DfsPart.

Let us see the search tree and the DfsVarOrdHeur and DfsPart functions
from the CSP solutions perspective. Let us suppose that the solutions of the CSP
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Figure 5.4: Tagging the nodes of a search tree

are depicted in the leaves-nodes 𝑛3, 𝑛4, 𝑛8, 𝑛9, and 𝑛14. This means that

• a DfsVarOrdHeur(1) call should produce an output containing all these

nodes encoded as

[1, 1, 1]
[1, 1, 2]
[1, 2, 3]
[1, 2, 4]
[2, 3, 1]

• DfsPart(1, Sibling, 𝑛1, 𝑛7) will output only the solutions between 𝑛1 and 𝑛7,
i.e.

[1, 1, 1]
[1, 1, 2]

• DfsPart(1, Sibling, 𝑛7, 𝑛12) will output only the solutions between 𝑛7 and
𝑛12, i.e.
[1, 2, 3]
[1, 2, 4]

• DfsPart(1, Sibling, 𝑛12, 𝑛15) will output only the solution between 𝑛12 and
𝑛15, i.e.
[2, 3, 1]

Therefore, in terms of solutions, DfsVarOrdHeur(1) is equivalent to the above
three independent and complementary DfsPart calls.

In other words, DfsVarOrdHeur(1) iterates sequentially from the node 𝑛1 to
node 𝑛15.

• DfsPart(1, Sibling, 𝑛1, 𝑛7) is equivalent to the DfsVarOrdHeur(1) execution
as it iterates from 𝑛1 (included) to 𝑛7 (not included).

• DfsPart(1, Sibling, 𝑛7, 𝑛12) is equivalent to DfsVarOrdHeur(1) execution
as it iterates from 𝑛7 to 𝑛12.

• And DfsPart(1, Sibling, 𝑛12, 𝑛15) is equivalent to DfsVarOrdHeur(1) exe-
cution as it iterates from 𝑛12 to 𝑛15.
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Finally, it is worth mentioning that the goal of partitioning the search tree is not to

provide splits that contain equal number of solutions, but to create parts that can

be explored in almost equal lengths of time.

Example 13. Let us suppose that we wish to explore in Fig. 5.4 only the nodes

between 𝑛7 (included) and 𝑛12 (not included). One should call DfsPart(1, Sibling,
[1, 2, 2], [2, 2]). The last two arrays (SiblingStart and SiblingEnd arguments)

represent 𝑛7 and 𝑛12 respectively.

• In the first for iteration inside DfsPart, we have Sibling[1] = 1. Thus, the
condition statement Sibling[ℓ] = SiblingStart[ℓ] in line 10 is satisfied.

• Subsequently, SiblingStart[1] is set to zero in line 11. We have reached the

correct Sibling, and therefore we will ignore SiblingStart[ℓ] for ℓ = 1 from
now on.

• Execution continues, a value 𝑣 is assigned to the constrainted variable,

and DfsPart(2, Sibling, SiblingStart, SiblingEnd) is called. Now we have

Sibling[2] = 1.

– As SiblingStart[2] = 2, the condition in line 8 is satisfied, and DfsPart
directly continues to the second iteration of the loop, to reach the next

sibling.

– Now, Sibling[2] = 2 which is equal to SiblingStart[2]. The equality

condition in line 10 is met again, and SiblingStart[2] will be “nullified.”

– We have reached 𝑛5 in Fig. 5.4. A value 𝑣 is assigned to the corre-

sponding constrainted variable. We are close to the starting node

𝑛7.

– DfsPart(3, Sibling, SiblingStart, SiblingEnd) is called.

* Sibling[3] = 1 and SiblingStart[3] = 2. The condition in line 8 is

satisfied. We continue to the second iteration of the loop, to reach

the next sibling.

* Sibling[3] is now 2 which is equal to SiblingStart[3]. The equality
condition in line 10 is met.

* We have eventually reached the starting node 𝑛7 in Fig. 5.4 which
is described by the SiblingStart array!

• DfsPart proceeds with normal execution, without taking into consideration
SiblingStart anymore.

• The search tree is regularly explored until we visit the ending node 𝑛12 which
is described by SiblingEnd.

The time to restore the starting node is not important, as it is logarithmic in the

search tree size.
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5.3 Search tree nodes random sampling

The ideal would be to know a priori how to equally partition the search tree

without the need to traverse it at first, as the time needed to traverse all the search

tree nodes is equivalent to the sequential search time. Recall that our goal is not

to reproduce sequential search, but simply to find some search space splits to

explore them in parallel.

5.3.1 Pre-estimating a node’s exploration time

Instead of exploring the whole search tree and then split it, we can traverse

a representative proportion of it. Our partial traversal does not need to know

anything a priori about the search tree. It does not need to know its size, height,

etc. It will simply traverse a part of it.

This can be accomplished by overriding (“deleting”) a proportion of the search

tree nodes and construct a table like Table 5.1, that will contain fewer nodes than

the original one. This is a main contribution of this work: To produce almost equal

splits as the ones in Fig. 5.3 without having to keep every node in Fig. 5.1 and

Table 5.1, but only the most representative.

Sampling addresses two critical issues.

Issue 1. If a node 𝑛𝑖 is overridden (passed by), how its time slice is replaced?

For example, if we override 𝑛4 in Table 5.1, what would be the visit time for 𝑛5?
Overriding 𝑛4 does not mean to completely ignore 𝑛4; its corresponding duration
should be added to the visit time of 𝑛5, because the new reduced table visit times

should be as close to Table 5.1 real times as possible.

Issue 2. Deciding to override a node 𝑛𝑖 leads us inevitably to override all of its
offspring too.

E.g., the decision to override let us say 𝑛6 in Fig. 5.1 is in fact a tough one: By
overriding 𝑛6 we override its offspring/descendant 𝑛7 too.

But let us start sampling without considering the above issues initially.

Rule 1. Let 𝑅𝑖 be a randomly generated real number, uniformly distributed in

the range [0, 1]. Let 𝑛𝑖 be a tree node without descendants and 𝑝 the simulation

factor, i.e. the minimum proportion of the nodes we want to override. Then, 𝑛𝑖 is
overridden if 𝑅𝑖 ≤ 𝑝.

This means that a node with no descendants is overridden with probability at

least 𝑝. We say “at least,” because the precise probability to override 𝑛𝑖 must
additionally include the probability that one of 𝑛𝑖’s ancestors is overridden.

Now we should consider what happens if the node 𝑛𝑖 has, let us say, 𝑑 descen-
dants. Note that the term “descendants” refers not only to the nodes (children)

directly connected to 𝑛𝑖, but to all the nodes that belong to the sub-tree below 𝑛𝑖
(the children of the children etc.). In this case, if we override 𝑛𝑖 with probability
𝑝, this will override its descendants too. However, what we initially wanted was
to override each separate node with probability 𝑝. Therefore, the probability to
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override 𝑛𝑖 and its 𝑑 descendants should be:

Pr[𝑛𝑖 overridden] ⋅ Pr[1
st descendant overriden] ⋯Pr[𝑑th descendant overriden] .

(5.1)

This is at least 𝑝 ⋅ 𝑝𝑑 = 𝑝1+𝑑.

Rule 2. Let 𝑅𝑖 be a randomly generated real number, uniformly distributed in [0, 1].
Let 𝑛𝑖 be a tree node with 𝑑 descendants and 𝑝 the minimum proportion of the

nodes we want to override. Then, 𝑛𝑖 is overridden if 𝑅𝑖 ≤ 𝑝
1+𝑑.

This is a simple workaround for Issue 2 above that also guarantees that the

average proportion of the overridden nodes will be at least 𝑝.1

5.3.2 Pre-estimating a node’s descendants number

Rule 2 does not completely resolve Issue 2. When we are about to decide

if a node will be overridden or not, with probability 𝑝1+𝑑, we should know the

descendants number 𝑑. But this is not possible a priori, because we have not yet
traversed the very node itself!

The solution is to make a pre-estimation of 𝑑, based on the previous history.
In order to step forward, we make the following general assumption.

Assumption. Each node is expected to have a similar descendants

number and a similar time duration to the other nodes that belong to

the same tree level. In other words, the nodes that have equal distance

from the root are expected to have similar descendants and duration.2

Take for example the lowest leaf nodes in Fig. 5.5. The node with the label 𝑡4 is
examined on whether is going to be simulated. At first, we need to pre-estimate its

descendants number 𝑑. According to the above Assumption, the node with 𝑡4 tag
will have a similar 𝑑 with the other nodes in the same level (𝑡1, 𝑡2, 𝑡3 tags). Each of
these has zero descendants. Consequently, the average 𝑑 is also (0 + 0 + 0)/3 = 0.

Hence, the node with 𝑡4 tag will be overridden with probability 𝑝
1+0 = 𝑝. And

here comes Issue 1: If the node is indeed overridden, how its simulated duration

𝑡4 will be computed?
The duration is computed exactly in the way that we computed 𝑑: as the

average of the existing non-simulated nodes in the same level.

𝑡4 =
∑3𝑖=1 𝑡𝑖
3

. (5.2)

In fact, we put appropriate weights on the sum’s terms, and we calculate the

weighted average duration.

1Again, we say “at least,” because the precise probability to override a node must additionally

include the probability that one of its ancestors is overridden.
2Besides, one node that is closer to the root is expected to have a larger lifetime than a node

that is closer to the leaves. It can be demonstrated that the nodes of a specific level have a low

standard deviation of their durations. Moreover, the multiple simulation (MapReduce) rounds

described in a following section apply the simulation on smaller search tree parts, where the

standard deviation is even smaller.
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Figure 5.5: The fourth bottom node is going to be simulated
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Figure 5.6: 𝑇3 is the simulation time for another node

Rule 3. If we want to override a node 𝑛𝑗, its virtual time duration is estimated

as 𝑡𝑗 =
∑
𝑗−1
𝑖=1𝑤𝑖𝑡𝑖
∑
𝑗−1
𝑖=1𝑤𝑖

. The sum refers to the nodes 𝑛𝑖 in the same level with 𝑛𝑗 that

have not been simulated themselves. The descendants number 𝑑𝑗 of 𝑛𝑗 can be

pre-estimated exactly in the same way: 𝑑𝑗 =
∑
𝑗−1
𝑖=1𝜔𝑖𝑑𝑖
∑
𝑗−1
𝑖=1𝜔𝑖

.

Last but not least, we have to define the above 𝑤𝑖 and 𝜔𝑖 so as to be flexible
in cases such as the one in Fig. 5.6. In this figure we want to estimate the time

𝑇3 (and, of course, the same applies to the corresponding descendants’ number).
Observe in the figure that 𝑇2 is not as accurate as 𝑇1 is, because 𝑇2 includes the
virtual duration 𝑡4 that was computed in the previous paragraphs. Hence, 𝑇2 is
more virtual than 𝑇1 and we have to reduce appropriately its weight.

Rule 4. The weight for each time term 𝑡𝑖 in Rule 3 is calculated as 𝑤𝑖 =
𝑡𝑖−𝑡simulated

𝑡𝑖
,

where 𝑡
simulated

is the aggregate simulation time for the descendants of 𝑛𝑖. Quite
similarly, theweight for each descendants term 𝑑𝑖 is𝜔𝑖 =

𝑑𝑖−𝑑simulated
𝑑𝑖

, where 𝑑
simulated

is the sum of the 𝑑𝑖’s for the descendants of 𝑛𝑖 that have been simulated and not
visited in reality.

Note that if 𝑡
simulated

(or 𝑑
simulated

) is zero, the weight 𝑤𝑖 (or 𝜔𝑖) becomes equal
to 1. Experimental results about using the above 𝑤𝑖 and 𝜔𝑖 formulas or simply
setting them always to 1 are presented in the “Empirical Results” section.

Finally, we cannot override the very first node 𝑛𝑖 in each search tree level, as
we cannot compute the duration 𝑡𝑖 and descendants’ number 𝑑𝑖 based on the

previous nodes in the same level.
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5.4 The MapReduce input specification

In our MapReduce setup, a Mapper plays the role of a worker that has to

explore a specific part of the search tree. The Reducer’s role is trivial: an identity

function that reproduces its input, i.e. the solutions provided by the Mappers.

Before reaching the Mappers, the MapReduce system normally gets an input

text file as input. Then, it splits the text file into smaller ones, which are eventually

distributed to the Mappers. The default and straightforward way to split a big text

file is to create one file out of each line. In any case, splitting a large text file and

distributing it to the Mappers is automatically done by the MapReduce system

itself.

What is this input file in the first place? For Fig. 5.4 we may have the following

text file as input.

𝑛1..𝑛7
𝑛7..𝑛12
𝑛12..𝑛15

As described in Section 5.2, the real content/encoding of the above is

[1] .. [1, 2, 2]
[1, 2, 2] .. [2, 2]
[2, 2] .. [2, 3, 2]

This is then split into three files: one file per line. Each of the three files “feeds”

one Solver, as in Fig. 5.3.

The file containing the second line [1, 2, 2] .. [2, 2]will trigger DfsPart(1, Sibling,
[1, 2, 2], [2, 2]) as in Example 13.

Please note that the above text file can be furthermore simplified by omitting

the very first and last nodes, as they are not necessary.

.. [1, 2, 2]
[1, 2, 2] .. [2, 2]
[2, 2] ..

To sum up, from right to left, Reducers simply echo their input, and Mappers

process one line which represents a part of the search tree. All the parts are

stored in a big text file which is the input of the whole MapReduce system.

5.5 Slicing the search tree

Having specified the big data file format, it remains to be seen how this text

file is initially created.
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Figure 5.7: Needed time to explore each node and its descendants. The time of a

parent node includes the time needed by its children.

5.5.1 Slicing the search tree by repeating sequential search

One simple way to generate the big text file (which represents the “big data”

in the MapReduce terminology) is to execute DfsVarOrdHeur and record every
𝑋 milliseconds the next search tree node to be visited using the aforementioned
specified file format. Then, MapReduce would supply each line to a Mapper-Solver

and expect that each of them would process the corresponding search tree part

and output its solutions within 𝑋 milliseconds.
Figure 5.7 presents a search tree with a tag above each node. Each tag

represents the cumulative time (e.g. in milliseconds) needed to explore the node

and its descendants (included).

Table 5.2 displays when each node in Fig. 5.7 is visited in a vertical timeline.

The horizontal rules delimit the table into four parts that take about 12 milliseconds

to be explored each and can be encoded to the following text file that could serve

as a MapReduce input file.

𝑛1..𝑛8
𝑛8..𝑛15
𝑛15..𝑛21
𝑛21..𝑛24

For the sake of simplicity of the example, each time we make the transition

from a parent node to a child (e.g. from 𝑛1 to 𝑛2 or from 𝑛2 to 𝑛3) we keep the
clock unchanged. We change the clock when we have to move to a node of less

or equal level, for example when we have to move from 𝑛3 to 𝑛4 or from 𝑛4 to 𝑛5.
In these cases, we find the previous node 𝑛

prev
in the same level with the node we

are currently visiting. We compute the current clock time by adding to the clock

time of 𝑛
prev

the time 𝑡
prev

that we spent visiting it.

Unfortunately, this way of creating the big input file would last the same time

as the whole sequential search, because we have to explore all the search tree

nodes to construct it! We definitely need a faster way to generate this big text file

in order to benefit from the MapReduce approach, end-to-end.
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Table 5.2: A timeline while exploring the nodes in Fig. 5.7

clock level 1 level 2 level 3

0 𝑛1
𝑛2

𝑛3
3 𝑛4
6 𝑛5

𝑛6
8 𝑛7
12 𝑛8

𝑛9
𝑛10

13 𝑛11
18 𝑛12

𝑛13
21 𝑛14
26 𝑛15

𝑛16
𝑛17

32 𝑛18
𝑛19

33 𝑛20
38 𝑛21

𝑛22
𝑛23

42 𝑛24
46
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Figure 5.8: Estimation of the exploration time of the skipped (grayed-out) nodes

5.5.2 Slicing the search tree by mocking sequential search

The purpose of the big data generation is to output in a file only a tiny portion

of the search tree nodes which delimit search tree parts that need an equal time

to explore them. Hence, it is not necessary to visit all the search tree nodes in

order to produce a small subset of them. As we already said, we can visit only a

few of the nodes at the same depth and then skip the rest of them while adding to

a virtual clock the estimated time we saved up while skipping these nodes.

Just like the approach where we interrupted search every 𝑋 milliseconds and
recorded the next node to be visited, now we interrupt search every 𝑋 milliseconds
of the virtual clock. Thus, we are able to speed up the big data generation, but we

pay the price of not being accurate in having splits of exactly 𝑋 milliseconds, as
we use a virtual clock.

A simulation example

Figure 5.8 displays the search tree of Fig. 5.7 with some of its nodes overridden

(simulated/grayed-out) and the subtrees below them deleted. Above each grayed-

out node there is a box containing an estimation of the time that the exploration of

this node would have taken. These estimations are used in order to proceed with

sampling the search tree without exhausting all the nodes and without spending

the time needed to visit all of them.

The nodes that are parents (or grandparents etc.) of the simulated search

tree nodes have their exploration duration inside dotted boxes. Parent nodes

include the time needed to explore their offspring, so the dotted boxes above them

signify that part of the included time is an estimation, i.e. that the exploration time

is partially real as some of the offspring have been simulated and overridden.

Similarly to the previous Table 5.2, Table 5.3 illustrates the times when each

node of the search tree in Fig. 5.8 was visited. While this time is measured in

milliseconds again, please note that the clock is virtual. This means that when

we visit a grayed-out node, we make a leap in time: the virtual clock in the first

column is updated without spending real time.

Table 5.3 contains a column with the probability 𝑝1+𝑑 that the current node is
overridden. For this example, we set 𝑝 = 0.1. In practice, 𝑝 will be normally set to
something much greater than 0.1 in order to speed up simulation; this small value
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Table 5.3: A timeline while sampling the search tree nodes

virtual descendants simulation

clock level 1 level 2 level 3 pre-estimation probability

0 𝑛1 — —

𝑛2 — —

𝑛3 — —

3 𝑛4 0 0.1

6 𝑛5 2 0.001

𝑛6 0 0.1

8 𝑛7 0 0.1

12 𝑛8 6 0.0000001

𝑛9 2 0.001

𝑛10 0 0.1 simulated

14 𝑛11 0 0.1

19 𝑛12 2 0.001 simulated

25.89 𝑛15 6 0.0000001

𝑛16 2 0.001

𝑛17 0 0.1

31.89 𝑛18 1.75 0.0018

𝑛19 0 0.1 simulated

34.72 𝑛20 0 0.1

39.72 𝑛21 5.63 0.00000023 simulated

52.74
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is used here plainly for illustrative purposes.

There is also a column with the pre-estimation of the descendants number

𝑑. For each row of the table, a random number in [0, 1] is generated. If 𝑝1+𝑑 is
greater than the random number, then the current node is overridden/simulated,

and this is noted in the last column. Everything depends on the random number

and how big the probability is.

The very first node in each search tree level (𝑛1, 𝑛2, 𝑛3) was in purpose not

simulated. They cannot be simulated as there are not any previous nodes in the

same level that would allow to make a pre-estimation of how much time a node in

this level would need to be explored and how many descendants it has.

Let us proceed with explaining Table 5.3 row by row. The visit durations (𝑡𝑖
values) are indicative.

• The virtual clock is initially set to 0.

• For the very first node of each search tree level, the sampling method is

proceeding as usual: Each of the nodes 𝑛1, 𝑛2, 𝑛3 is visited.

• For 𝑛3, the time 𝑡3 = 3 and the descendants number 𝑑3 = 0 is recorded.

• We are about to visit 𝑛4. From now on, we can use previous nodes to estimate

the time that the next nodewould need and its number of descendants without

having to visit it.

• Furthermore, from now on, we generate a random number in [0, 1] for each
node. If the random number is greater than 𝑝1+𝑑, we literally visit the node,
else we simulate it.

• Based on the previous nodes of 𝑛4 (only 𝑛3) in the same search tree level,
we pre-estimate 𝑑4 to be 0. Therefore, the probability to simulate 𝑛4 is
𝑝4 = 0.1

1+0 = 0.1.

• Let us say that the random number 𝑅4 for this node is 0.6. As 𝑝4 < 𝑅4 we
will not simulate this node.

• Thus, the search method is normally exploring 𝑛4 and finally records 𝑡4 = 1
and 𝑑4 = 0.

• The search method then returns to 𝑛2 for the last time. Before we return to
𝑛1, we record 𝑑2 = 2 which is the total number of nodes under 𝑛2 and 𝑡2 = 6,
which includes 𝑡3 + 𝑡4 plus 2 which is the time spent by 𝑛2 itself.

• It is time to check if we will literally proceed to 𝑛5 or simulate the visit. The
(only) previous node in the same level had 𝑑2 = 2 descendants, so we

pre-estimate that 𝑑5 will be 2 too. Therefore, the probability to simulate 𝑛5 is
𝑝5 = 𝑝

1+𝑑 = 0.11+2 = 0.001.

• Let us say that the random number 𝑅5 is 0.3. We have 𝑝5 < 𝑅5, so the node
will not be simulated.
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• In the same fashion, let us say that the leaves-nodes 𝑛6 and 𝑛7 will not be
simulated too. We just traverse them and record the relevant times 𝑡6 = 2,
𝑡7 = 2, and, as we ascend back, 𝑡5 = 𝑡6 + 𝑡7 + 1 = 5 and 𝑡1 = 𝑡2 + 𝑡5 + 1 = 12.

• The corresponding 𝑑𝑖 values are also recorded: 𝑑5 = 2 and 𝑑1 = 6, which is
the number of all the nodes in the subtree under 𝑛1.

• Actually, we have completed the traversal of the leftmost subtree without

simulating any of its nodes. Let us continue with 𝑛8.

• We pre-estimate the number of descendants 𝑑8 based on the (only) previous
node 𝑛1 in the same level. Hence, 𝑑8 is pre-estimated as 6. The probability
to override/simulate 𝑛8 is therefore 𝑝8 = 𝑝

1+𝑑 = 0.11+6 = 0.0000001. Let

𝑅8 = 0.35. Again, the node 𝑛8 will not be simulated as 𝑝8 < 𝑅8.

• We proceed to 𝑛9. We pre-estimate 𝑑9 as the average (𝑑2 + 𝑑5)/2 = 2. The
probability to simulate 𝑛9 is 𝑝9 = 0.1

1+2 = 0.001. For another time, let us
suppose that 𝑝9 < 𝑅9: The node will not be simulated.

• Stepping one level deeper to 𝑛10, the pre-estimation of 𝑑10 is 0, as the
average of 𝑑3, 𝑑4, 𝑑6, and 𝑑7. Therefore, we have 𝑝10 = 0.1. Let 𝑅10 =
0.05. At last, this node will be simulated, as 𝑝10 > 𝑅10. We will not spend

any time here e.g. to propagate or validate constraints. We just record

the estimation of time that a real visit to 𝑛10 would take as the average

𝑡10 = (𝑡3 + 𝑡4 + 𝑡6 + 𝑡7)/4 = 2. We also set 𝑑10 = 0: the pre-estimation is

permanently assigned to 𝑑10.

• We are moving forward to 𝑛11. The virtual clock counter is increased by

𝑡10 = 2, but this time is virtual: the actual time needed for the simulation was
just the negligible time to compute an average value that is not comparable

e.g. with the time needed to propagate constraints.

• 𝑛11 is eventually not simulated, we record 𝑡11 = 2 and 𝑑11 = 0, and we step
back to 𝑛9.

• While we are leaving forever 𝑛9, we record 𝑡9 = 𝑡10 + 𝑡11 + 1 = 7. We have

also to record somehow that 𝑡9 is “hybrid” time, in the sense that 𝑡10 is virtual
time (an estimate) and 𝑡11 is a real visit time. For this purpose, we use a
special weight defined in Rule 4 as

𝑤9 =
𝑡9 − 𝑡simulated

𝑡9
=
𝑡9 − 𝑡10
𝑡9

≈ 0.71.

The weights for all the other nodes on the same level are by default equal to

1. On the other hand, the weight of the simulated node 𝑛10 is equal to 0 as
𝑡10 is purely virtual.

• We also permanently record 𝑑9 = 2 as the descendants number of 𝑛9.

• We proceed to 𝑛12. Based on the previous nodes in the same level, we

expect that it will have 2 descendants, as this is the average of 𝑑2, 𝑑5, and 𝑑9.

N. Pothitos 106



Constraint Programming: Algorithms and Systems

Hence, the probability to simulate it instead of visiting it is 𝑝12 = 𝑝
1+2 = 0.001.

It is a small probability, but let us suppose that the random number 𝑅12 is
less than 𝑝12.

• 𝑛12 is going to be simulated and, therefore, we should make estimations
about 𝑡12.

• The weighted average of the nodes in the same level is

𝑡12 =
𝑤2𝑡2 + 𝑤5𝑡5 + 𝑤9𝑡9
𝑤2 + 𝑤5 + 𝑤9

= 1 ⋅ 6 + 1 ⋅ 5 + 0.71 ⋅ 7
1 + 1 + 0.71

≈ 5.89ms.

• Finally, it is estimated that 𝑑12 = 2.

• Back to 𝑛8, we compute 𝑡8 = 𝑡9 + 𝑡12 + 1 = 13.89ms. The weight for 𝑡8 is

𝑤8 =
𝑡8 − 𝑡simulated

𝑡8
=
𝑡8 − 𝑡10 − 𝑡12

𝑡8
≈ 0.43.

We have 𝑑8 = 2+𝑑9 +𝑑12 = 6 descendants, as there are 2 direct descendants
of 𝑛8 plus the descendants of 𝑛9 and 𝑛12. The corresponding weight is

𝜔8 =
𝑑8 − 𝑑simulated

𝑑8
=
𝑑8 − 𝑑10 − 𝑑12

𝑑8
= 6 − 0 − 2

6
≈ 0.67.

• We move to 𝑛15. To compute the simulation probability, we have to pre-

estimate the descendants number. The pre-estimation is the weighted

average of the descendants of the nodes in the same level

𝜔1𝑑1 + 𝜔8𝑑8
𝜔1 + 𝜔8

= 1 ⋅ 6 + 0.67 ⋅ 6
1 + 0.67

= 6.

• The probability to simulate 𝑛15 is 0.1
1+6, but let us suppose that we will

literally visit the node.

We continue to visit or simulate the rest of the nodes in the same fashion until

the Figure 5.8 and Table 5.3 are completed. Finally, we are able to draw some

horizontal rules in the table and split it into (virtual) parts of 12 ms.

Apparently, the durations of the partitions in Tables 5.2 and 5.3 do not coincide,

as in the latter table some of the nodes have been skipped, and the measured time

is less real and more “virtual” than the time in the former table. The virtual clock in

Table 5.3 implies that we spent less time to construct the “big data” MapReduce

input file.

5.5.3 How much does simulation cost?

The time needed to make a simulation is at most equal to the proportion 1 − 𝑝
of the total time needed to explore the search tree.

In the above indicative example, the whole simulation process takes 90% of

the total time needed to solve the CSP as 𝑝 = 0.1. But this is clearly inefficient! In
practice, we use much greater simulation probabilities, such as 𝑝 = 0.999 as in
the empirical results section.
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5.5.4 Multiple MapReduce rounds

If the Mapper/worker reaches a given timeout (e.g. 60 seconds for a split that

was pre-estimated to last 10 seconds) while trying to produce solutions, it stops.

Then, the Mapper splits the remaining search tree part, and the Reducer records

the splits to a common file that will be used as an input to the next MapReduce

round. If in the current round no worker times out, then no splits are produced,

and MapReduce has completed traversing the whole search tree.

Example 14. Let us say that a Mapper-worker gets the line 𝑛3..𝑛10 as input. The
worker has to traverse the search tree part between these two nodes. Let us also

suppose that each line is supposed to be traversed within 𝑋 = 10 ms.
Nevertheless, we have reached the timeout of 60 ms, and we are still in node

𝑛6. Unfortunately, we underestimated the duration of 𝑛3..𝑛10.
In this case, we stop the traversal of 𝑛6, and we simulate again the traversal

𝑛6..𝑛10 in order to produce new search tree parts (e.g. 𝑛6..𝑛8 and 𝑛8..𝑛10) and
record them in a new input file for a new MapReduce round.

5.6 Empirical results with MapExplore

Based on the theory of the previous sections, we created MapExplore, a
system that integrates Constraint Programming into the MapReduce framework.

We integrated Naxos Solver, our generic CSP solver written in C++ [67], inside

Hadoop 2.7.1, a popular MapReduce environment. The source code for our

evaluations is freely available.3

We installed Hadoop on eight Ubuntu Linux 14.04 virtual machines in the

cloud [51, 52]. Each machine had eight 2GHz CPU cores and 8GB memory.

The detailed hardware (e.g. CPU) specifications in the cloud are not available

due to the so-called virtualization. One of the machines was selected to act as

a coordinator (master) of the other seven machines (slaves). The master had a

60GB disk and each slave a 40GB disk. In our setup, the master machine also

served as a slave machine, in order to save up as many CPU cores as possible.

5.6.1 Sequential vs. simulation time

Our Naxos Solver is capable of solving any CSP. In these evaluations, we fo-
cused on 𝑁 Queens and Number Partitioning and targeted to find all their solutions.

The 𝑁Queens problem objective is to place 𝑁 queens on a 𝑁×𝑁 chessboard so that
no queen attacks any other. The objective of the 𝑁 Number Partitioning problem is

to split the set 𝑆 = {1, 2, … , 𝑁} into two disjoint sets 𝑆1 and 𝑆2 with equal cardinality,
where 𝑁 is even. Also, it should hold that ∑𝑖∈𝑆1 𝑖 = ∑𝑗∈𝑆2 𝑗 and ∑𝑖∈𝑆1 𝑖

2 = ∑𝑗∈𝑆2 𝑗
2.

Tables 5.4 and 5.5 display the time needed by a sequential search method to

solve specific instances of these problems and find all the solutions of them.

3http://di.uoa.gr/~pothitos/CPMR
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Table 5.4: Sequential time in seconds to solve 𝑁 Queens

𝑁 15 16 17

Sequential Search 1,212.7 7,902.5 57,910.9

Table 5.5: Sequential time in seconds for 𝑁 Number Partitioning

𝑁 40 44 48

Sequential Search 3,365.7 37,860.9 44,2013.4

5.6.2 MapExplore parallel/distributed execution time

In our introduced MapExplore system, the simulation incorporates a random
factor: there is a probability whether a tree node will be visited or not (1‰ vs.

999‰, which imply a simulation probability 𝑝 = 0.999). Thus, we repeated our
experiments three times.

The figures that follow illustrate the standard error (SE) between the runs

initiated with different random seeds. The standard error (SE) is defined as the

ratio of the standard deviation (SD) of the recorded times to the square root of

the number of samples, i.e. SE = SD/√𝑛, where 𝑛 = 3 repetitions. The standard
error is depicted as an “I” on top of each measurement in the figures, just to get
an idea of the possible variance between the samples. The standard error is not

visible in most figures because it is small.

The simulation method provides a text file with many records in the format

𝑛
start

..𝑛
end

. Each record is actually a part of the search space. The whole text

file is the input for our MapReduce system. The file is automatically divided by

Hadoop and each record is sent to a Mapper, which serves as a worker-Solver
as in Fig. 5.3.

Each Solver instance traverses the search tree part that corresponds to its
input record, outputs the solution in it, and then waits for another input record.

MapReduce automatically gathers all the solutions found by all the Mappers into

a single directory.

The whole wall clock time for our MapExplore process, from the search tree

sampling to the solutions gathering is illustrated in Fig. 5.9 and 5.10. Each subfig-

ure corresponds to a different CSP instance. The 𝑥𝑥′ axes depict the number of
the Mappers used in our MapExplore system. The whole wall clock time includes
the sampling phases and all the MapReduce rounds which were in general no

more than five.

The Mappers number is very crucial as it is in fact the number of the workers/

solvers employed. For most instances, the times are reduced while the Mappers

number increases. This is something desirable as it seems that we can exploit to

some degree every single available worker.

Nevertheless, the times for the Mappers number above 64 are reduced slightly

or, especially for 15 Queens and 𝑁=40 Partitioning, get even bigger. The expla-
nation for this behavior is that, in reality, we had only 64 CPU cores available.

Even if we add more than 64 workers/solvers, these solvers have to share only
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Figure 5.9: Time needed to get all the solutions of 𝑁 Queens
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64 cores; only 64 solvers can be active at the same time.

And why for smaller instances the times get worse as Mappers increase? The

answer is that Hadoop and MapReduce in general are a framework for big inputs

and outputs. Hadoop’s overhead is apparent when creating more Mappers than

needed.

Figures 5.11 and 5.12 display the corresponding speedups that MapExplore
offers in relation to the sequential search process. The speedup is computed as

the ratio of the sequential to the parallel execution time. As the instance gets

bigger, we have bigger speedups, almost 35. Recall that MapReduce suits better

to processes with big inputs/outputs.

Last but not least, in Fig. 5.13 one can see that if we use the weight 𝑤𝑖
introduced in Rule 4 the overall time to solve 𝑁 Queens instances is improved.

For the experiments in Fig. 5.13 we used 128 Mappers.

5.7 Conclusions

Today, due to the availability of so many cores and virtual machines in the

cloud, it is not enough to propose just efficient algorithms. These days, one has to

create scalable algorithms and fairly distribute their execution to as many workers

as possible. The state-of-the-art framework to achieve this is MapReduce, initially

introduced by Google to process the whole Internet.

In this chapter, MapReduce was adopted to explore the huge search space

of CSPs. MapReduce is designed to process big data files, so in this work the

search space has been shredded into small parts, and the parts were encoded

and assembled into a big text file. In related works, the search space is divided

in a top-down manner. In this work, the search tree exploration was sampled,

and for the first time the partitioning was done plainly in terms of time, without

having to consider the search tree topology. Each small search tree part is a line

in the big MapReduce input text file. Finally, it is the responsibility of MapReduce

to distribute the lines of the big text file into the available solvers, to utilize all

available resources, to keep a load balance between them, and to collect all the

solutions found.

N. Pothitos 112



Constraint Programming: Algorithms and Systems

4.5
5

5.5
6

6.5
7

32 64 128 256 512

15 Queens

9
10
11
12
13
14
15
16
17

32 64 128 256 512

16 Queens

12
16
20
24
28
32

32 64 128 256 512

17 Queens

S
p
e
e
d
u
p

Mappers

Figure 5.11: The speedup in relation to the sequential approach for the 𝑁 Queens
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6. THE REVENGE OF BOUNDS CONSISTENCY

My power is made perfect in weakness.

2 Corinthians 12:9

Arc consistency enforcement is an intelligent way to transform a Constraint

Satisfaction Problem in order to reduce its search space. While current research

focuses on stronger consistency levels than arc consistency, this chapter illustrates

that in many practical cases the “weaker” bounds consistency can be used, making

search more efficient. This paradox is theoretically explained for the first time [73].

We highlight consistency enforcement as an essential part of the solving

process and we develop criteria that help Constraint Programming solvers select

the fastest between arc consistency (AC) and bounds consistency (BC), without

human intervention.

For the sake of simplicity and without loss of generality, in this chapter we will

focus on binary CSPs. In binary CSPs, each constraint 𝐶𝑖𝑗 = (𝑆𝑖𝑗, 𝑅𝑖𝑗) connects
exactly two variables, i.e. 𝑆𝑖𝑗 = {𝑋𝑖, 𝑋𝑗}. The 𝑅𝑖𝑗 set contains the valid combinations
of the values of the two variables.

6.1 Consistency enforcement

Consistency is a particularly useful property in the road to solve a CSP. It

implies that the values of the domains of each variable have a kind of support with

respect to the CSP constraints. For the sake of readability, we repeat Definition 2

here as
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Definition 10. An arc (𝑋𝑖, 𝑋𝑗) is arc consistent iff for each 𝑣𝑖 ∈ 𝐷𝑖 there exists a
𝑣𝑗 ∈ 𝐷𝑗 with (𝑣𝑖, 𝑣𝑗) not violating 𝐶𝑖𝑗.

Example 15. Let 𝑋1 and 𝑋2 be two constrained variables with domains 𝐷1 = {1, 2, 3}
and 𝐷2 = {2, 3, 4, 5, 6, 7}. Let us assume that the constraint between the variables
is 𝑋2 = 2𝑋1.

(𝑋1, 𝑋2) is arc consistent, as for each of the values 1, 2, 3 in 𝐷1, the correspond-
ing values 2, 4, 6 belong to 𝐷2.

On the other hand, (𝑋2, 𝑋1) is not arc consistent. To prove this, we need just
one value from 𝐷2 that does not have any support in 𝐷1. Indeed, for the value 3 in
𝐷2, there is not any 𝑣1 in 𝐷1 with 2𝑣1 = 3.

If we want to make (𝑋2, 𝑋1) arc consistent, we should remove the values 3, 5,
7 out of 𝐷2 as they do not have any supports in 𝐷1.

This example also illustrates that consistency is not a symmetric property.

In order to check if an arc (𝑋𝑖, 𝑋𝑗) is arc consistent, we have to iterate through
all the values of 𝐷𝑖. The function that does this and removes the unsupported
values from 𝐷𝑖 is called Revıse. A faster yet looser alternative would be to check if

the arc is bounds consistent.

Definition 11. An arc (𝑋𝑖, 𝑋𝑗) is bounds consistent iff for the min𝐷𝑖 and max𝐷𝑖
values, there exist some 𝑣𝑎, 𝑣𝑏 ∈ 𝐷𝑗 with (min𝐷𝑖, 𝑣𝑎) and (max𝐷𝑖, 𝑣𝑏) not violating
𝐶𝑖𝑗.

1

In this case, Revıse has to check and update only the two bounds of 𝐷𝑖. But, in
the worst case, when no support is found, it has to iterate through all 𝐷𝑖 values
too.

Example 16. Again, let 𝑋1 and 𝑋2 be two variables with 𝐷1 = {1, 2, 3}, 𝐷2 =
{2, 3, 4, 5, 6, 7}, and 𝑋2 = 2𝑋1.

(𝑋1, 𝑋2) is bounds consistent, as for each of the bounds 1 and 3 in 𝐷1, the
corresponding values 2 ⋅ 1 = 2 and 2 ⋅ 3 = 6 belong to 𝐷2.

Nevertheless, (𝑋2, 𝑋1) is bounds inconsistent, as the upper bound 7 of 𝐷2 has
not any support in 𝐷1.

If we want to enforce bounds consistency to (𝑋2, 𝑋1), we should remove 7 out
of 𝐷2. Note that only one removal is needed in the case of bounds consistency
enforcement in contrast to the three removals needed by the arc consistency

enforcement for the same domains in Example 15.

Lemma 4. Both arc and bounds consistency enforcement have equal time com-

plexities in the worst case.

Proof. Time is measured by counting the number of elementary steps that each al-

gorithm takes. We use the common uniform unit system in which every algorithm’s

operation takes the same constant time [96].

In order to compute the worst-case complexity of enforcing arc consistency,

we repeat here the following procedure, already stated in Section 2.3.3.

1Formally, Definition 11 is about the so-called bounds(D) consistency [10]. On the other

hand, in the bounds(Z) consistency variant, 𝑣𝑎 and 𝑣𝑏 do not just belong to 𝐷𝑗 but to its superset
[min𝐷𝑗 .. max𝐷𝑗]. Furthermore, the range consistency bounds(R) variant examines if every 𝑣𝑖 ∈ 𝐷𝑖
(not just min𝐷𝑖 and max𝐷𝑖) has support in [min𝐷𝑗 .. max𝐷𝑗].
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1: function RevıseAC(𝑋𝑖, 𝑋𝑗)
2: domain_is_modified← false

3: for each 𝑣𝑖 ∈ 𝐷𝑖 do
4: value_is_supported← false

5: for each 𝑣𝑗 ∈ 𝐷𝑗 do
6: if (𝑣𝑖, 𝑣𝑗) ∈ 𝑅𝑖𝑗, with 𝐶𝑖𝑗 ∈ C then

7: value_is_supported← true

8: break

9: end if

10: end for

11: if value_is_supported then
12: continue

13: else

14: Remove 𝑣𝑖 out of 𝐷𝑖
15: domain_is_modified← true

16: end if

17: end for

18: return domain_is_modified
19: end function

Let 𝑑 be the maximum domain size. Then, line 3 performs at most 𝑑 iterations.
Each of the lines 2, 4, and 18 is 1 elementary operation.2 The loop in line 5 performs
at most 𝑑 iterations. The statements inside this inner loop are at most 3 elementary
operations. Finally, lines 11–16 consist at most 5 elementary operations.

Overall, we have at most 1 + 𝑑 ⋅ (1 + 𝑑 ⋅ 3 + 5) + 1 elementary operations, which
is 𝑂(𝑑2).

Bounds consistency enforcement is a variation of the above.

function RevıseBC(𝑋𝑖, 𝑋𝑗)
domain_is_modified← false

for each 𝑣𝑖 ∈ 𝐷𝑖 in ascending order do
value_is_supported← false

for each 𝑣𝑗 ∈ 𝐷𝑗 do
if (𝑣𝑖, 𝑣𝑗) ∈ 𝑅𝑖𝑗, with 𝐶𝑖𝑗 ∈ C then

value_is_supported← true

break

end if

end for

if value_is_supported then
break

else

Remove 𝑣𝑖 out of 𝐷𝑖
domain_is_modified← true

end if

2We suppose that one elementary operation corresponds to one line of code execution. Russel

and Norvig mention that “some measure that reflects the running time of the algorithm but is not tied

to a particular compiler or computer […] could be just the number of lines of code executed” [83].
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end for

for each 𝑣𝑖 ∈ 𝐷𝑖 in descending order, with 𝐷𝑖 ≠ ∅ and 𝑣𝑖 > min𝐷𝑖 do
value_is_supported← false

for each 𝑣𝑗 ∈ 𝐷𝑗 do
if (𝑣𝑖, 𝑣𝑗) ∈ 𝑅𝑖𝑗, with 𝐶𝑖𝑗 ∈ C then

value_is_supported← true

break

end if

end for

if value_is_supported then
break

else

Remove 𝑣𝑖 out of 𝐷𝑖
domain_is_modified← true

end if

end for

return domain_is_modified
end function

Typically, RevıseBC is similar to RevıseAC, but contains two loops instead of
one. The number of elementary steps inside each loop is still at most (1 + 𝑑 ⋅ 3 + 5).

The number of iterations of the first loop plus the number of iterations of the

second loop is at most 𝑑, because, in the worst case, the algorithm iterates through

all the values of 𝐷𝑖. Each respective value of 𝐷𝑖 is visited at most once.
Overall, similarly to RevıseAC, the number of elementary operations is again

1 + 𝑑 ⋅ (1 + 𝑑 ⋅ 3 + 5) + 1 which is 𝑂(𝑑2).

In a nutshell, enforcing arc or bounds consistency between a pair of constrained

variables (𝑋𝑖, 𝑋𝑗) takes the same time if 𝑋𝑖 has not any support in 𝑋𝑗, which results
in removing every value out of 𝐷𝑖. This is the worst case.

Nevertheless, in a better case, if RevıseBC finds a support, it stops the corre-

sponding iteration through 𝐷𝑖 values, while RevıseAC always iterates through all

of them.

6.2 Our contribution and alternative approaches

From Constraint Programming early years, developers of solvers such as

Ilog3 have observed empirically that there is a trade-off between arc and bounds
consistency in terms of time and space, and bounds consistency is preferable in

many cases [85]. More specifically, Barbara Smith quotes Jean-François Puget

who mentioned

Solver is a compromise between efficiency and completeness… In

the example [of constraint propagation of arithmetic constraints] the

incompleteness comes from the fact that arithmetic expressions only

3http://ilog.com
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propagate bounds. This is an example of the choice we made. Prop-

agating holes in expressions [i.e. enforcing arc consistency] would

require much more memory and time than the current implementation.

From tests made on a very large set of examples, we found that the

current compromise is by far better.

In alternative approaches to our work, in current constraint programming

solvers, the choice between AC and BC is not justified theoretically but only em-

pirically. In our work, apart from wide experimental results, we provide theoretical

analysis for theAC vs. BC trade-off so as to predict when arc consistency becomes

a bottleneck. We show that bounds consistency is usually more efficient when

dealing with CSPs having large domains.

This could be thought of as a paradox, because AC and BC have equal worst-

case complexities, and AC is stronger than BC, in the sense that it removes more

inconsistent values out of the domains of constrained variables. This is true, but

only when we study the constraint propagation algorithms isolated, independently

of the search methods. In this work, we try to see the big picture: constraint

propagation integrated into backtracking search methods. We compute the overall

time complexity and focus on how it is affected by the choice between AC and BC.

In Section 6.3 we present the backbone of constructive search and the related

mathematical notation. In Section 6.4 we compute the upper bounds of the

complexities of search methods that traverse a path and maintain either AC or

BC. In Section 6.5 we check in practice if the theoretically computed complexities

can predict which methodology, AC or BC, fits better a given CSP. Finally, in

Section 6.6 we introduce a bounds consistency variant that enforces consistency

not to all (𝑛) constrained variables but to a varying (𝑘) number of them.

6.3 Constructive search

A backtracking approach involves a constructive search method that iterates

through the constrained variables of a CSP: it assigns to the first variable a value

and proceeds to the second variable, it assigns a value to it and, if the constraints

are not violated, proceeds to the third variable and so on. Backtracking occurs if

any of the constraints is violated: the current assignment is undone, and a different

value is assigned to the variable. If all alternative values from the variable’s domain

are exhausted, we go to the previous variable and assign a different value to it

and so on.

6.3.1 The typical backtracking search method

Figure 6.1 illustrates the recursive backtracking search method DFS (Depth

First Search) originally introduced in Fig. 2.4. Each DFS(ℓ) call corresponds to the
variable 𝑋ℓ. In order to solve a CSP, we call DFS(1), to begin with instantiating the
first variable 𝑋1. This call attempts to assign to 𝑋1 a value from 𝐷1; hence, we may
have at most 𝑑 different attempts to assign a value to 𝑋1, where 𝑑 is the maximum
size of all the domains. Therefore, we have at most 𝑑 subsequent calls of DFS(2).
Each DFS(2) calls DFS(3) and so on.
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1: function DFS(ℓ)
▷ The method reached the search tree level ℓ:

2: 𝐷′ℓ ← 𝐷ℓ
3: for each 𝑣 ∈ 𝐷′ℓ do
4: 𝐷ℓ ← {𝑣} ▷ Assign 𝑣 to 𝑋ℓ
5: if no constraint is violated then

▷ Proceed to the next variable/level:

6: if ℓ = 𝑛 then
7: return success

8: else if DFS(ℓ + 1) = success then
9: return success

10: end if

11: end if

12: end for

13: 𝐷ℓ ← 𝐷′ℓ
14: return failure

15: end function

Figure 6.1: A typical search method

root

level 1: 𝐷1 ← {1} 𝐷1 ← {2}

level 2: 𝐷2 ← {1} 𝐷2 ← {2} 𝐷2 ← {1} 𝐷2 ← {2}

level 3: 𝐷3 ← {1} 𝐷3 ← {2} 𝐷3 ← {1} 𝐷3 ← {1} 𝐷3 ← {2}

Figure 6.2: An incomplete binary search tree

For the sake of simplicity, a static variable ordering is kept while we assign

values to the variables. Therefore, DFS(1) will assign a value to 𝑋1, DFS(2) will
assign a value to 𝑋2, etc. Nevertheless, our computations are still valid even if we
use another variable ordering heuristic.

This algorithm forms a search tree, as in Figure 6.2. The indicative CSP used

in this figure contains three variables 𝑋1, 𝑋2, 𝑋3, with the corresponding domains
𝐷1 = 𝐷2 = 𝐷3 = {1, 2}. Each level ℓ of the tree refers to a DFS(ℓ) call, and each
node of the same level represents an iteration of its for loop. More specifically,

each node is labeled with the assignment done in line 4.

We have at most 𝑑𝑛 leaves representing the lowest level DFS(𝑛) calls, where
𝑛 is the number of the constrained variables.

Apart from DFS, there are many other constructive search methods [72]. In
any case, DFS is the basis to describe most of them.
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6.3.2 A search tree path

We denote as 𝑇
path

the total time spent in the nodes that belong to the same

path. A path begins from the root node and descends to a leaf node. The dotted

line in Figure 6.2 is a path.

𝑇
path

(ℓ) is a part of 𝑇
path

and denotes the time spent in a node of level ℓ while
traversing a path.

In the rest of the chapter, the “AC” or “BC” exponents in the above symbols

refer to the corresponding AC or BC methodology. For example, 𝑇AC
path

(ℓ) is the
time spent in a node of level ℓ while maintaining AC.

6.3.3 Paths vs. trees

Throughout the rest of our theoretic computations, we measure the time spent

in search tree paths, instead of focusing on the time spent while traversing all

the paths of a complete search tree. This is done on purpose, just to simplify our

computations.

After all, as it will be proved in the last theoretic section 6.4.4, if we manage to

bound the time needed to traverse a search tree path, we are able to bound the

time needed to traverse the whole search tree.

Therefore, we are going to compute respectively an upper bound for traversing

a search tree path while maintainingAC or BC, and then multiply it by the maximum

number of paths to get an upper bound for the whole search tree.

6.4 Maintaining consistency during search

Depth-first-search method complexity is exponential; we cannot actually de-

crease its complexity class, but it is possible to limit the number of nodes. In other

words, we have to prune the tree to make search more efficient, and this can be

done via enforcing and maintaining consistency.

6.4.1 Time complexity in a search tree node

Figure 6.3 illustrates a search method with an integrated consistency algorithm

that can maintain either arc or bounds consistency. We break up the time spent

by DFS_CONS(ℓ) when it is on the top of the call stack into four crucial parts.

• 𝑇
prop

(ℓ) refers to the propagation algorithm in lines 2–5 and 9–10 respectively.

• 𝑇
store

(ℓ) corresponds to line 6 of the algorithm and represents the time needed

to store all the initial states of the domains.

• 𝑇
restore

(ℓ) corresponds to line 18 and represents the time needed to restore
all the domains. We claim that the time it takes to store the domains is equal

to the time it takes to restore them, i.e. 𝑇
store

= 𝑇
restore

.

After all, storing the value of a variable requires transferring a specific number

of bytes from one place of the memory to another. Re-storing the value back
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1: function DFS_CONS(ℓ)
▷ Initially, enqueue all arcs and make them consistent:

2: if ℓ = 1 then
3: 𝑄 ← {(𝑋𝑖, 𝑋𝑗) | 𝐶𝑖𝑗 ∈ C }
4: CONS(𝑄) ▷ See Figure 6.4

5: end if

▷ Store a copy of the domains in D for a future backtrack4

6: {𝐷′1, … , 𝐷
′
𝑛} ← {𝐷1, … , 𝐷𝑛}

7: for each 𝑣 ∈ 𝐷′ℓ do
8: 𝐷ℓ ← {𝑣}

▷ Only the arcs toward 𝑋ℓ are enqueued:
9: 𝑄 ← {(𝑋𝑖, 𝑋ℓ) | 𝐶𝑖ℓ ∈ C }
10: CONS(𝑄)
11: if not exists empty 𝐷𝑖 ∈ D then

▷ Proceed to the next level:

12: if ℓ = 𝑛 then
13: return success

14: else if DFS_CONS(ℓ + 1) = success then
15: return success

16: end if

17: end if

▷ Restore the previous state of domains4

18: {𝐷1, … , 𝐷𝑛} ← {𝐷′1, … , 𝐷
′
𝑛}

19: end for

20: return failure

21: end function

Figure 6.3: A search method that maintains consistency

function CONS(𝑄)
while 𝑄 ≠ ∅ do

Remove an arc (𝑋𝑖, 𝑋𝑗) out of 𝑄
if Revıse(𝑋𝑖, 𝑋𝑗) then

𝑄 ← 𝑄 ∪ {(𝑋𝑘, 𝑋𝑖) | 𝐶𝑘𝑖 ∈ C , 𝑘 ≠ 𝑗}
end if

end while

end function

Figure 6.4: The core of a coarse-grained propagation algorithm (AC-3)

4The assignments of storing the domains or restoring them back do not necessarily mean to

make a complete copy of the domain of every constrained variable. These two assignments imply

the need to store/restore only the modifications to the domains done in the current search tree

node.
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to the variable (the original place of memory) involves the same number of

bytes and, therefore, the same number of operations to transfer them back.

• 𝑇
const

corresponds to lines 8 and 11–17. These statements take constant

time.

In order to get the aggregate 𝑇
path

time, we are going to compute the overall

propagation and store-restore time for a search tree path, which is a route from the

root of the tree (ℓ = 1) to any of its leaves (ℓ = 𝑛). This means that we will study the
overall time of DFS_CONS(1), DFS_CONS(2), …, DFS_CONS(𝑛) consecutive
calls, each of them executing only one iteration of the for loop in line 7. The overall

path time is at most

𝑇
path

=
𝑛

∑
ℓ=1
𝑇
path

(ℓ)

=
𝑛

∑
ℓ=1
𝑇
prop

(ℓ) +
𝑛

∑
ℓ=1
𝑇
store

(ℓ) +
𝑛

∑
ℓ=1
𝑇
restore

(ℓ) +
𝑛

∑
ℓ=1
𝑇
const

=
𝑛

∑
ℓ=1
𝑇
prop

(ℓ) + 2 ⋅
𝑛

∑
ℓ=1
𝑇
store

(ℓ) + 𝑛 ⋅ 𝑇
const

, (6.1)

as 𝑇
const

remains the same for each ℓ, and, as previously explained, 𝑇
store

= 𝑇
restore

.

This formula applies both to maintaining arc and bounds consistency algorithms.

Nevertheless, according to the following table, there are some differentiations that

are going to be elaborated on in the following sections.

Path time terms

𝑛

∑
ℓ=1
𝑇
prop

(ℓ) 2
𝑛

∑
ℓ=1
𝑇
store

(ℓ) 𝑛 ⋅ 𝑇
const

Maintaining AC 𝑛2𝑑3 2𝑛𝑑 𝑛 ⋅ constant
Maintaining BC 2𝑛2

Section 6.4.2 Section 6.4.3

6.4.2 The constraint propagation aggregate complexity

Consistency enforcement algorithms are divided into two large categories: the

coarse-grained and fine-grained algorithms [10]. The best algorithms from the

two categories have been proven to have equal time complexities [12]. Therefore,

without loss of generality, in order to study consistency enforcement as a whole, it

suffices to simply focus on a typical coarse-grained algorithm, such as CONS in

Figure 6.4.

CONS is initially called by DFS_CONS (Figure 6.3, lines 2–5) before actual

search begins. The other propagation section (Figure 6.3, lines 9–10) inserts

some more arcs into the 𝑄 and then invokes CONS again.

By replacing the two CONS calls in Figure 6.3 by its pseudocode in Figure 6.4

we are able to compute the overall time for the two propagation sections (lines

2–5 and 9–10) of DFS_CONS as the product of the number (𝐸
total

) of the inserted-

removed arcs out of the 𝑄 and the time that Revıse takes.
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We may have at most 𝐸
total

= 𝑛2 ⋅ 𝑑 entry operations into the queue 𝑄, where
𝑛2 ≈ 𝑛(𝑛 − 1) denotes the maximum number of the arcs (𝑋𝑖, 𝑋𝑗) with 𝑋𝑖, 𝑋𝑗 ∈ X and

𝑖 ≠ 𝑗. After all, each specific arc (𝑋𝑖, 𝑋𝑗) is initially inserted into the queue and also
when a value is deleted out of 𝐷𝑗. Therefore, a specific arc is inserted at most
1 + 𝑑 ≈ 𝑑 times into the queue, as a value cannot be deleted more than once while
descending a search tree path.

In a search tree path, the domains gradually shrink, until they contain just one

value in the last level or until a domain is “wiped out.” An arc (𝑋𝑖, 𝑋𝑗) is enqueued
when Revıse deletes a value from 𝐷𝑗, and also when 𝑋𝑗 is assigned a value. An
assignment is equivalent to deleting all the values in 𝐷𝑗, apart from one.

To conclude, we may have at most 𝑑 deletions of values out of a domain, which
can enqueue a specific arc. In sum, we may invoke at most 𝑑 Revıse calls for a
specific arc.

Following Section 6.1, a Revıse call takes approximately 𝑑2 elementary steps.
Overall, the propagation part of DFS_CONS will take approximately

𝑛

∑
ℓ=1
𝑇
prop

(ℓ) = 𝐸
total

⋅ 𝑑2

= 𝑛2𝑑 ⋅ 𝑑2

= 𝑛2𝑑3, (6.2)

which is the product of how many insertions we may have into the queue (𝐸
total

)

and the Revıse function operations needed when an arc is popped out of the queue
(𝑑2).

The same reasoning applies to faster—yet more complex—propagation al-

gorithms [12]. The only difference is that these algorithms implement faster (but

more memory-consuming) Revıse functions that still take the same time either for
AC or BC.

Again, the important thing for the current theoretical analysis is that, in the worst

case, the propagation time complexity remains the same, either while enforcing

AC or BC. However, there are significant differences regarding the domains store

and restore mechanism.

6.4.3 Backup and restore aggregate complexity

In the general case, constraint propagation cannot guide us directly to a solution.

However, it can be a critical component of a backtracking search method: each

assignment made is followed by consistency enforcement and each consistency

enforcement is followed by an assignment.

If the constraints are violated, the last assignment is undone. This is a constant-

time operation in a consistency-enforcement-free search method. But while a

search method maintains consistency, the undo operation involves not only un-

doing an assignment, but also restoring the domains affected by the consistency

enforcement after the assignment.

Why do we need to compute the “restore” time along with the “store” time?

Theoretically, it would suffice only to store the modifications to the domains as we

N. Pothitos 126



Constraint Programming: Algorithms and Systems

descend a search tree path. But we need also to take into consideration the time

needed to restore the domains back into their original state for two reasons.

1. No one can guarantee that the node we are currently visiting or the search

tree path that we currently descend will ultimately guide us to a solution. In

the worst case, we need to take into account the time needed to restore the

domains into their previous state, before the current search tree node was

visited. Then, we should try to visit another search tree node.

2. Even if the current search tree node does belong to a path that guides to a

solution, we may need to find all the solutions and not only one. Therefore, in

this case also we need to consider the time needed to undo the modifications

done in the current search tree node.

Storing domains while maintaining arc consistency

As mentioned in Fig. 6.3, while descending a path, in each search tree node,

we need to store (and then restore) all the modifications done to the constrained

variables domains. By computing the total domain modifications number, we

compute the minimum time needed to store them, while descending a search tree

path.

AC enforcement may remove every value out of the domains of the 𝑛 variables.
The maximum domain size is 𝑑; hence, we may have at most 𝑛𝑑 value removals.
As we descend a search tree path (from ℓ = 1 to 𝑛), each value can be only

removed and not added back to a domain. Thus, the total values removed and

stored for backtracking purposes in a single path is also bounded by

𝑛

∑
ℓ=1
𝑇AC
store

(ℓ) = 𝑛𝑑 , (6.3)

which is the number of all the domain values in a CSP.

Example 17. Let us have four constrained variables 𝑋1, 𝑋2, 𝑋3, 𝑋4 with domains
𝐷1 = {3, 4}, 𝐷2 = {3, 5, 6}, 𝐷3 = {0, 1, 2, 3, 4, 5}, and 𝐷4 = {0, 2, 4, 6, 8, 10}. The

constraints are 𝑋1 ≠ 𝑋2, 𝑋1 ≠ 𝑋3, 𝑋2 ≠ 𝑋3, and 𝑋4 = 2𝑋3.
The following table contains the changes that take place in the above domains,

while searching for a solution to the problem.

Assignments Updates in domains

𝐷2 𝐷3 𝐷4
𝐷1 ← {3} ̸3, 5, 6 0, 1, 2, ̸3, 4, 5 0, 2, 4, ̸6, 8, 10
𝐷2 ← {5} 0, 1, 2, ̸3, 4, ̸5 0, 2, 4, ̸6, 8, ̸10
𝐷3 ← {0} 0, ̸2, ̸4, ̸6, ̸8, ̸10
𝐷4 ← {0}

Searching for a solution includes an assignment (first column) and enforcing

consistency to the rest of the domains.

First, in the first row, we make the assignment 𝐷1 ← {3}. As 𝑋1 ≠ 𝑋2, we should
remove 3 out of 𝐷2. Similarly, in the same row, we remove 3 out of 𝐷3 as the
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second constraint is 𝑋1 ≠ 𝑋3. And as 𝑋4 = 2𝑋3 and 2 ⋅ 3 = 6, we also remove 6 out
of 𝐷4.

This was a practical example of arc consistency enforcement after an assign-

ment takes place. We are still at the first level of the search tree.

As we proceed to the second row of the table, we make the assignment

𝐷2 ← {5}. When we make an assignment, we proceed one level deeper into the

search tree. Every assignment is followed by constraint propagation. In our case,

we enforce arc consistency. As 𝑋2 ≠ 𝑋3, we should remove 5 out of 𝐷3. And as
2 ⋅ 5 = 10, we remove 10 out of 𝐷4.

In the third row, we make the assignment 𝐷3 ← {0}. The values 2, 4, and 8
are removed out of 𝐷4, as they do not have any support in 𝐷3 anymore.

The last row is trivial, as we assign {0}, containing the only remaining value, to
𝐷4.

This was an example on how assignments interchange with constraint propa-

gation during search. In the case of arc consistency constraint propagation, the

domains eventually lose all their values. This is done gradually, while traversing

the search tree levels. As we should be able to restore the domains in the state

that they were in each search tree level, while descending a search tree path, we

need to store every value of every domain (𝑛𝑑 values).

Storing domains while maintaining bounds consistency

Again, while descending a search tree path, we need to know how many

modifications will be done to the domains, in order to compute the minimum time

needed to store (and then restore) them.

Bounds consistency can alter only the bounds of a domain. In order to store

the previous bounds of a domain, we need 2 operations: to record the domain’s
lower bound and to record the domain’s upper bound. At a search path node of

level ℓ, the 2 operations can be repeated for every variable’s domain; except for
the variables that have been already instantiated, i.e. the variables having only

one value in their domains.

These domains are excluded because there are not any other values in them

that can be removed; if the last value is removed, we do not proceed, and we

backtrack to a previous search tree level. In a search level ℓ, the instantiated

variables are at least ℓ − 1. Therefore, the uninstantiated variables are at most
𝑛 − ℓ + 1. The overall time needed to store the initial domains in a search tree node
in level ℓ is

𝑇BC
store

(ℓ) = 2(𝑛 − ℓ + 1) , (6.4)

which is the product of the two operations needed to store the two bounds of a

variable, and the number of uninstantiated variables.
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For all the nodes of the search tree path it holds

𝑛

∑
ℓ=1
𝑇BC
store

(ℓ) =
𝑛

∑
ℓ=1
(2 (𝑛 − ℓ + 1))

= 2
𝑛

∑
ℓ=1
𝑛 − 2

𝑛

∑
ℓ=1
ℓ + 2

𝑛

∑
ℓ=1
1

= 2𝑛2 − 2
𝑛(𝑛 + 1)

2
+ 2𝑛

= 𝑛(𝑛 + 1) ≈ 𝑛2 . (6.5)

Example 18. Let us consider the same constraint satisfaction problem as in the

previous Example 17.

The following table depicts the state of the domains during search. Each

row corresponds to a search tree level. The table is different from the one in

Example 17, in the sense that it does not contain every value of every domain,

but only their bounds.

Assignments Updates in domains bounds

𝐷2 𝐷3 𝐷4
min max min max min max

𝐷1 ← {3} 5 6
𝐷2 ← {5} 0 4 0 8
𝐷3 ← {0} 0 0
𝐷4 ← {0}

Again, the assignments interchange with constraint propagation. After the first

assignment 𝐷1 ← {3}, we have to enforce bounds consistency. This means that

the minimum and maximum values of every domain should have supports to the

other constrained variables. If a bound of a domain does not have any support, it

is trimmed.

The initial minimum value of 𝐷2 is 3. But as 𝑋1 ≠ 𝑋2 and 𝐷1 = {3}, this value is
not supported. Therefore, it should be removed out of 𝐷2 and 5 becomes its new
minimum value.

Then, we make the assignment 𝐷2 ← {5}. As it holds that 𝑋2 ≠ 𝑋3, the upper
bound of 𝐷3 which is 5, is not supported anymore. That is why in the second row
of the table, max𝐷3 has been trimmed to 4. Subsequently, due to the 𝑋4 = 2𝑋3
constraint and as the maximum value 10 of 𝐷4 is not supported now, we delete it,
and 8 becomes the new max𝐷4.

In the third row, we assign {0} to 𝐷3. In this case, max𝐷4 should become 0 too,
as this is the only supported value through the 𝑋4 = 2𝑋3 constraint.

This example illustrates that, in every search tree level, we need to store only

the bounds of the domains of the unassigned constrained variables, which is the

meaning of the above equation (6.4).

6.4.4 Will arc or bounds consistency be faster?

The answer to this question is unknown before we actually start and finish

solving a given arbitrary CSP. There is not any exact mathematical form to know a
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priori how much time each search methodology will take either while maintaining

AC or BC.

Nevertheless, we can bound the time needed by these search methodologies

using the above equations to compute the respective path times 𝑇AC
path

and 𝑇BC
path

.

These two path times allow us not to compute the exact times for AC and BC (that

will be simply denoted as TIME
AC

and TIME
BC

in the rest of the chapter) but at

least to get the respective upper bounds TIME
AC BOUND

and TIME
BC BOUND

.

Proposition 1. If 𝑛 < 𝑑, then TIME
AC BOUND

> TIME
BC BOUND

, else if 𝑛 > 𝑑, then
TIME

AC BOUND
< TIME

BC BOUND
.

Proof. TIME
AC

and TIME
BC

is bounded by 𝑇
path

if we multiply it by the maximum

number of paths. The maximum number of paths is equal to the maximum number

of leaves 𝑑𝑛. Therefore,

TIME
AC BOUND

= 𝑑𝑛 ⋅ 𝑇AC
path

, (6.6)

TIME
BC BOUND

= 𝑑𝑛 ⋅ 𝑇BC
path

. (6.7)

By combining (6.1) and (6.2) we get

𝑇
path

= 𝑛2𝑑3 + 2
𝑛

∑
ℓ=1
𝑇
store

(ℓ) + 𝑛 ⋅ 𝑇
const

. (6.8)

We specialize the above equation for AC and BC via (6.3) and (6.5).

𝑇AC
path

= 𝑛2𝑑3 + 2𝑛𝑑 + 𝑛 ⋅ 𝑇
const

, (6.9)

𝑇BC
path

= 𝑛2𝑑3 + 2𝑛2 + 𝑛 ⋅ 𝑇
const

, (6.10)

which leads to Proposition 1, because

𝑛 < 𝑑
⇔ 2𝑛 ⋅ 𝑛 < 2𝑛 ⋅ 𝑑

⇔ 𝑛2𝑑3 + 2𝑛2 + 𝑛 𝑇
const

< 𝑛2𝑑3 + 2𝑛𝑑 + 𝑛 𝑇
const

⇔ 𝑇BC
path

< 𝑇AC
path

⇔ 𝑑𝑛𝑇BC
path

< 𝑑𝑛𝑇AC
path

⇔ TIME
BC BOUND

< TIME
AC BOUND

.

6.4.5 Discussion

To compute the overall complexity of exploring a search tree and maintaining

arc/bounds consistency, we considered the worst case, i.e. that all the possible

leaves of the search trees will be visited. One may argue that this is a paradox,

as the purpose of maintaining consistency is to prune as many leaves and paths

in the search tree as possible and never visit all of them.

This is true, but we considered visiting the whole search tree, as this facilitated

the mathematical formulas, and, after all, we just needed an upper bound for

the time needed to maintain arc/bounds consistency during search. Therefore,
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the times used plainly for constraint propagation (𝑇
prop

) either for arc or bounds

consistency were considered equal.

In contrast to the time needed to propagate the changes in the constrained

variable domains, we focused on the times that a backtracking mechanism needs

to store these changes, and we found significant differentiations while maintaining

arc or bounds consistency.

We believe, furthermore, that the time needed to store the changes of the

domains has an immediate relationship to the memory needed by the two propa-

gation methodologies themselves. Conclusively, we believe that even when the

propagation times 𝑇
prop

remain the same both for arc and bounds consistency,

there is still a differentiation in the memory needed to maintain each consistency

level (same as the above differentiation between 𝑇AC
store

and 𝑇BC
store

) that will unavoid-

ably affect the respective propagation times too in practice.

6.5 Empirical evaluations

All the above theory was inspired by observations while solving artificial and

real-life constraint satisfaction problems. To test the theoretical results of this

work in practice, we consider all standard CSP instances taken from the First

XCSP3 Constraint Mini-Solver Competition [32]. The specific instances used in

the mini-solver track are available under the respective link in the competition

site.5

Tables 6.1, 6.2, and 6.3 display raw experimental results, while Figure 6.5

depicts them graphically. But, before going through all these empirical results, let

us describe how one can reproduce them.

6.5.1 Methodology

In order to make comparisons, we had to employ two different solvers: one that

maintains arc consistency (AC) and another that maintains bounds consistency

(BC). Therefore, we took the open source Naxos Solver [67] and created its AC
and BC variants.

Note that the original Naxos Solver implements several consistency levels
for various constraints. Consequently, we created two sets of patches, one that

implements pure arc consistency and another for pure bounds consistency for

every constraint employed. All patches are freely available.6

Similarly to the theory of this work, we considered only binary constraints

(that apply between two constrained variables) to simplify consistency enforce-

ment. Therefore, we binarized the global constraints (that apply to more than two

variables) that exist in some CSP instances by substituting them by groups of

equivalent binary constraints.

Finally, it is worth noting that, in order to be more accurate, the illustrated

CSP parameters 𝑛 and 𝑑 (number of constrained variables and maximum domain

cardinality in the CSP) are not taken directly from the CSP definition; they are

5http://www.cril.univ-artois.fr/XCSP17
6https://github.com/pothitos/ACvsBC-Solver-Patches
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Table 6.1: CSP attributes and solution times while maintaining AC and BC – Part I

CSP 𝑛 𝑑 TIME
AC

TIME
BC

aim-50-2-0-unsat-2 50 2 0.71 0.65

AllInterval-007 25 13 0.07 0.07

AllInterval-012 45 23 0.14 0.13

AllInterval-016 61 31 0.20 0.19

AllInterval-035 137 69 0.65 0.91

AllInterval-050 197 99 1.42 5.27

AllInterval-080 317 159 6.65 203.52

bdd-15-21-2-2713-79-08 21 2 41.39 40.37

bdd-15-21-2-2713-79-16 21 2 2326.85 X

bqwh-15-106-35_X2 106 6 0.43 4.53

bqwh-15-106-36_X2 106 6 0.21 1.46

bqwh-18-141-09_X2 141 6 7.99 597.87

bqwh-18-141-31_X2 141 7 0.33 828.42

bqwh-18-141-83_X2 141 6 5.18 837.63

color_X2 500 5 68.21 X

ColouredQueens-03 9 3 0.01 0.01

composed-25-01-25-3 33 10 0.09 0.04

composed-25-01-25-4 33 10 0.09 X

composed-25-10-20-5 105 10 0.31 1481.76

composed-75-01-25-6 83 10 0.22 X

cril-5_X2 42 81 55.06 X

Crossword-m1c-lex-h1501 225 26 11.34 X

Crossword-m1c-ogd-h2310 529 26 40.89 83.52

Crossword-m1c-uk-vg-4-8 32 26 11.39 14.81

Crossword-m1c-words-p20 81 26 0.65 0.58

driverlogw-01c 71 4 0.02 0.02

driverlogw-02c 301 8 110.01 X

driverlogw-04c 272 11 3.03 50.28

driverlogw-08c 408 11 263.16 X

driverlogw-08cc 408 11 254.62 X

Dubois-021 63 2 149.08 140.53

Dubois-022 66 2 303.95 291.51

ehi-85-297-30 297 7 84.50 0.33

ehi-85-297-98 297 7 0.32 0.34

ehi-90-315-13 315 7 0.27 0.30

ehi-90-315-37 315 7 0.34 0.33

geometric-50-20-d4-75-03 50 20 0.50 0.51

geometric-50-20-d4-75-46 50 20 13.79 X

geometric-50-20-d4-75-54 50 20 0.30 0.66

jnh-012 100 2 0.17 0.12

jnh-213 100 2 0.12 0.08

jnh-302 100 2 0.09 0.13

Kakuro-easy-015-sumdiff 194 9 0.07 0.05

Kakuro-easy-079-sumdiff 344 9 0.13 0.11
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Table 6.2: CSP attributes and solution times while maintaining AC and BC – Part II

CSP 𝑛 𝑑 TIME
AC

TIME
BC

Kakuro-easy-084-ext 240 9 0.48 0.40

Kakuro-easy-109-ext 256 9 0.97 1.15

Kakuro-easy-150-ext 256 9 0.79 0.78

Kakuro-easy-164-sumdiff 344 9 0.30 0.30

Kakuro-hard-179-sumdiff 996 9 2.02 666.57

Kakuro-medium-016-ext 140 9 0.15 0.15

Kakuro-medium-020-ext 140 9 0.09 0.09

Kakuro-medium-055-sumdiff 234 9 0.09 0.05

Kakuro-medium-162-ext 256 9 13.81 14.25

Langford-3-05 25 11 0.12 0.12

Langford-4-04 28 9 0.13 0.15

Langford-4-05 35 14 0.17 0.17

MagicHexagon-02-0000 18 7 0.14 0.09

MagicSquare-3-sum 17 9 0.02 0.01

MagicSquare-3-table 9 9 0.01 0.01

MagicSquare-4-table 16 16 0.24 0.11

MagicSquare-5-table 25 25 139.94 1627.44

MarketSplit-03 151 100 1149.24 264.75

MarketSplit-05 153 99 674.29 309.90

MarketSplit-07 152 100 595.51 148.30

MarketSplit-08 154 100 292.73 115.03

MarketSplit-09 152 100 570.38 270.14

MarketSplit-10 151 100 243.32 142.11

MultiKnapsack-1-03 235 2536 14.62 0.87

MultiKnapsack-1-5_X2 239 4106 X 95.23

MultiKnapsack-2-16 274 1181 X 76.94

MultiKnapsack-2-21 342 1361 X 46.15

MultiKnapsack-2-22 342 1501 X 163.88

MultiKnapsack-2-41 136 1126 73.21 2.90

MultiKnapsack-2-48 180 1126 811.88 43.36

Nonogram-018-table 576 2 3.14 2.98

Nonogram-035-table 576 2 2.48 2.49

Nonogram-096-table 576 2 5.79 5.73

Nonogram-168-table 400 1 1.20 1.04

Nonogram-177-table 1024 2 2.57 2.69

Nonogram-180-table 1024 2 32.95 34.15

Pb-queen-0974553 1137 39 25.70 3.47

pigeonsPlus-07-05 42 7 17.76 8.76

pigeonsPlus-08-04 40 8 52.36 28.48

pigeonsPlus-09-03 36 9 239.93 143.16

Primes-10-20-3-3 213 784 10.79 0.04

Primes-10-60-3-3 444 784 46.51 659.36

Primes-15-20-2-5 219 2116 168.98 0.16
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Table 6.3: CSP attributes and solution times while maintaining AC and BC -Part III

CSP 𝑛 𝑑 TIME
AC

TIME
BC

Primes-20-40-2-1 241 3574 71.23 0.05

PropStress-0020 293 24 1297.90 1.30

qwh-10-57-7_X2 100 5 0.11 0.10

rand-2-23-23-253-131-0 23 23 673.35 X

rand-2-23-23-253-131-1 23 23 663.37 X

rand-2-30-15-306-230f-09 30 15 8.51 65.62

rand-2-40-11-414-020-23 40 11 46.38 328.02

rand-2-40-11-414-020-35 40 11 4.67 68.40

rand-5-12-12-200-12442-38 12 12 642.24 846.58

rand-5-12-12-200-t95-3 12 12 701.10 803.31

rand-5-2X-05c-15 12 12 558.94 1837.32

Renault 101 42 3.87 3.66

Renault-medium-pos 148 20 0.27 0.30

Renault-megane-pos 99 42 3.05 3.53

Renault-mgd 101 42 3.74 3.48

Renault-small 139 16 0.08 0.06

Renault-souffleuse 32 12 0.01 0.02

RenaultMod-09 111 42 740.11 1032.59

Sat-flat200-06-dual 2237 4 470.44 261.04

Sat-flat200-14-dual 2237 4 1.34 179.40

Sat-flat200-32-dual 2237 4 130.75 13.55

Sat-flat200-55-dual 2237 4 146.12 1147.39

Sat-flat200-65-sum 6911 3 127.33 117.12

Sat-flat200-67-dual 2237 4 138.31 688.10

Sat-flat200-80-dual 2237 4 X 1574.29

SchurrLemma-mod-012-9 12 9 6.88 39.40

SchurrLemma-mod-015-9 15 9 9.45 37.19

SchurrLemma-mod-020-9 20 9 11.85 42.86

SchurrLemma-mod-030-9 30 9 17.74 58.30

SchurrLemma-mod-050-9 50 9 33.20 100.52

SchurrLemma-mod-100-9 100 9 116.89 301.21

Subisomorphism-A-15 180 200 2.61 13.11

Subisomorphism-g07-g39 20 1 0.06 0.05

Subisomorphism-g08-g31 30 100 4.83 7.06

Subisomorphism-g10-g35 41 120 0.05 0.04

Subisomorphism-si2-b09-m200-02 40 200 0.30 0.21

Subisomorphism-si6-b03-m800-07 480 800 1.23 1.43

TravellingSalesman-20-076_X2 61 70 50.54 1407.10

TravellingSalesman-20-142_X2 61 115 1640.18 X

TravellingSalesman-25-003_X2 76 62 190.14 X

TravellingSalesman-25-066_X2 76 62 28.76 224.92

TravellingSalesman-4-20-001-a4_X2 61 52 60.84 448.12

TravellingSalesman-4-20-727-a4_X2 61 74 708.48 X
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Figure 6.5: The time needed to solve the CSPs while maintaining AC divided to

the time spent while maintaining BC

reported by the solver itself. Consequently, 𝑛 is reported only after the binarization
of the constraints has been completed, possibly by adding more constrained

variables.

Also, we enforce bounds consistency for the first time, before displaying the

maximum domain cardinality 𝑑. This means for example that if we have two

constrained variables 𝑋1 and 𝑋2, with 𝑋1 ≤ 𝑋2 and 𝐷1 = {1, 2, … , 100} and 𝐷2 =
{25, 26,… , 50}, the maximum cardinality will not be computed as 100. Bounds
consistency will be enforced first, and 𝐷1 will be limited to {1, 2, … , 50}. The

maximum domain cardinality 𝑑 will be eventually displayed as 50. In this way we
“normalize” redundant domains.

6.5.2 Execution

In order to construct Tables 6.1 and 6.2 with the experimental results, we follow

the above methodology and display 𝑛 and 𝑑 for each CSP instance. If 𝑛 is greater
than 𝑑, we display it bold, else 𝑑 is displayed bold. In theory, when 𝑑 is greater
than 𝑛, we expect that maintaining bounds consistency is more efficient than

maintaining arc consistency.

In the above tables, if the corresponding TIME
AC

for a CSP is bold it means that

it is less than TIME
BC
. Otherwise, TIME

BC
is bold, which means that maintaining

bounds consistency is more efficient than arc consistency in this CSP.

Using the above methodology, we created two separate solvers, one that

maintains arc consistency and one that maintains bounds consistency. Each of
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them was assigned to solve the First XCSP3 Constraint Mini-Solver Competition

CSPs [32]. Each CSP instance has to be solved within 40 minutes according to

the competition standards. If a solver cannot solve an instance within this time

frame, it is marked with an “X” in the table. Otherwise, the elapsed time in seconds

is written. Please note that only the CSP instances that were solved at least from

one solver are displayed in the table.

We executed the experiments in an Ubuntu Linux 18.04 virtual machine with 8

virtual CPUs and 8GB of memory.

6.5.3 Visualization

In order to make comparisons more easily, we depicted graphically the ratio

TIME
AC
/TIME

BC
versus 𝑑/𝑛 in Figure 6.5 using the ⋄ symbol.

When theAC solver does not produce a solution, we have an undefined TIME
AC

denoted as “X” in the table. In the figure, the corresponding point is depicted with

a△ symbol. This represents a very high TIME
AC
/TIME

BC
ratio, which means that

maintaining BC is much more efficient than AC in this case.

On the other hand, when TIME
BC

is “X,” the ratio TIME
AC
/TIME

BC
is depicted

with a ▽ symbol. This denotes a very low ratio, which means that AC is much

more efficient than BC in this case.

It may be obvious that the above △ and ▽ points do not correspond to real

values. They are used in the margins of Figure 6.5 to represent marginal ratios,

as described above.

As the ⋄ points in the figure are somehow sparse, the results become more

intuitive if we draw a smooth curve between them. Therefore, the curve in Fig-

ure 6.5 has been derived by the LOESS method [23, 97] and is representative of

the ⋄ points.

In rough lines, LOESS is used to unify scattered points along the plot by

drawing a smooth curve that passes between them. The advantage of this method

is that it does not require a parameter or function of any form to fit a model to the

data. The only input is the data themselves.

In our case, we made LOESS method ignore the marginal △ and ▽ points

because they do not depict real values.

6.5.4 Observations

In Figure 6.5 we compare the times for solving a CSP instance via maintaining

AC and BC. A first conclusion is that BC can be better than AC for many instances.

This is an important observation, as, due to the fact that AC enforces a stronger

consistency level than BC, and both AC and BC have equal worst-case com-

plexities (Lemma 4), there is the misconception that AC is always better than

BC.

However, the conclusion about the occasional superiority of BC over AC has no

practical use, if we do not know when it happens. We have to find the appropriate

conditions to know a priori if a CSP instance will be solved faster by maintaining

AC or BC.

In theory (Proposition 1) the relation between 𝑛 and 𝑑 defines the relation

between the upper limits of TIME
AC

and TIME
BC
. To put it simply, the 𝑑/𝑛 ratio
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affects the TIME
AC
/TIME

BC
ratio, and this is evident in practice in Figure 6.5: On

average, TIME
AC
/TIME

BC
< 1 if 𝑑/𝑛 < 1 and TIME

AC
/TIME

BC
> 1 if 𝑑/𝑛 > 1.

This becomes clearer if we observe the smooth curve constructed by the LOESS

method, which represents the “average” of the ⋄ points [23].

Of course, there is some deviation between our theoretic expectations and

the observed results. This is due to the fact that in theory we studied the worst

case of complete search trees for both maintaining AC and BC, while in practice

the two methodologies may produce incomplete search trees that are different

between them.

Regarding the△ points (that represent the cases when only the maintaining BC

method found a solution while maintaining AC did not find one) they are apparently

more on the right side, i.e. when 𝑑/𝑛 > 1. On the other hand, the ▽ points are

gathered mostly on the left side of Figure 6.5. This means that for 𝑑/𝑛 < 1, the
maintaining BC methodology is usually not only less efficient than AC, but it may

produce no solution for a CSP, while AC is able to solve it.

6.6 The new k-bounds-consistency variant

We have shown that, under certain conditions, maintaining bounds consistency

can be more efficient than maintaining arc consistency. What about going one

step further? Can we loosen bounds consistency itself—by enforcing it not to all

arcs but to a subset of them—and produce even more efficient results?

We are going to propose a looser consistency type, which enforces bounds

consistency only to the variables with domain sizes less than or equal to 𝑘 [74].

6.6.1 Theoretical analysis

Definition 12. The arc/constraint (𝑋, 𝑌) connecting the variables 𝑋 and 𝑌 is 𝑘-
bounds-consistent, iff (𝑋, 𝑌) is bounds-consistent or |𝐷𝑋| > 𝑘.

Example 19. Let 𝑋, 𝑌 be constrained variables with the corresponding domains
𝐷𝑋 = {5, 6, 8} and 𝐷𝑌 = {1, 2, 3}, and it holds 𝑋 = 𝑌 + 5. The constraint is not 5-
bounds-consistent, because |𝐷𝑋| ≤ 5 and there is not any support in 𝐷𝑌 for 5 ∈ 𝐷𝑋.
However, we do have 2-bounds-consistency, as |𝐷𝑋| > 2.

Lemma 5. 𝑘-bounds-consistency enforcement on an arc (𝑋, 𝑌) requires at most

𝑂(𝑘𝑑) steps.

Proof. The revision of an arc/constraint includes the check for support values and

the consistency enforcement. To check for the consistency, we need 𝑂(2 ⋅ |𝐷𝑌|)
steps, as for each one of the two 𝐷𝑋 bounds, we try to find a support value 𝑦 ∈ 𝐷𝑌.

But wemust also consider what happens when a 𝐷𝑋 bound is found inconsistent.
In this case we should enforce bounds-consistency by removing the inconsistent

bound out of 𝐷𝑋 and by repeating the above check for the new bound. We may

have 𝑂(|𝐷𝑋|) removals.
As a result, the overall revision complexity is 𝑂(|𝐷𝑋|) ⋅ 𝑂(2|𝐷𝑌|) = 𝑂(|𝐷𝑋| ⋅ |𝐷𝑌|).
Nevertheless, remember that 𝑘-bounds-consistency is enforced only when

|𝐷𝑋| ≤ 𝑘. As a consequence, 𝑘-bounds-consistency has a 𝑂(𝑘 ⋅ 𝑑) worst case
cost.
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As 𝑘 grows and approaches infinity, which is as a matter of fact equivalent to
𝑑, 𝑘-bounds-consistency becomes evidently identical to bounds-consistency. For
low 𝑘 values 𝑘-bounds-consistency approximates a simple constraint check.

Maintaining 1-bounds-consistency during search is identical with a plain back-
tracking method, and no constraint propagation is done. In this case 1-bounds-
consistency degenerates into a way to check if a constraint is satisfied: We search

to find a support value for the unique bound/value of 𝑋; if no support is found, the
unique value is removed, and an ultimate inconsistency signal is broadcast. This

particular consistency type may also appear in “lazy” propagation schemas, e.g.

in local search contexts [68].

6.6.2 Empirical results

Following the experiments in Section 4.3.1, we enforce our new consistency

level while solving the fourteen real-world datasets of the International Timetabling

Competition (ITC) track for universities [58]. All the source code is freely available.7

The experiments were conducted on an HP computer with an Intel dual-core

E6750 processor at 2.66GHz and 2GB of memory, running Ubuntu Linux 8.04.

In accordance with ITC standards, we have only 334 seconds in this machine in

order to find a solution.

The lightweight consistency proposed seems in theory to ease the burden of

the necessary revisions. But is it competitive in demanding problems such as

real-life course timetabling, in relation to other consistency levels?

Figure 6.6 displays the corresponding costs of the solutions found for each

one of the fourteen datasets. It is obvious that for each one of them there is a

specific 𝑘, for which maintaining 𝑘-bounds-consistency methodology gives the
best results. For 𝑘 = 1, the methodology actually uses no constraint propagation;
it is a plain backtracking method, so the results are poor. On the other hand,

while 𝑘 approximates infinity, i.e. while 𝑘-bounds-consistency approaches plain
bounds-consistency, the results are not so poor, but are apparently worse than

using the 𝑘 value, which usually lies around 25. We may consider this value

something like a “golden mean” but only for this type of CSP instances.

Conclusively, for very small 𝑘 values we found low quality solutions, i.e. with

high cost. On the contrary, as 𝑘 increases above the “golden mean,” the solution
quality remains almost the same.

7http://di.uoa.gr/~pothitos/ictai2012
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Figure 6.6: The objective/cost function value for the solutions found

139 N. Pothitos





Constraint Programming: Algorithms and Systems

7. CONCLUSIONS AND FUTURE DIRECTIONS

Science is the belief in the ignorance of experts.

Richard Feynman

Constraint Programming is quite wide area, and this dissertation contributed

to it both in theoretical and practical level. All the implementations were made

transparent and available to the open source community.

7.1 Unified random and deterministic heuristics

Our first contribution in this work was to present a well-founded paradigm to

exploit both stochastic and deterministic heuristics. Empirical evaluations showed

that our hybrid approach can produce better results than fully random or fully

deterministic methodologies [71, 72].

In order to achieve this, we approached and used heuristics as a confidence

measure. By exploiting these heuristic semantics, we were able to produce a new

efficient search method, namely PoPS, that can outperform other methodologies.

In general, our proposed framework gives the opportunity to exploit “on the fly”

whichever heuristic confidence fluctuations occur.

In the future, it will be challenging to parallelize it, as it supports a whole grid of

strategies, by concurrently invoking PopsSample with several PieceToCover and
conf arguments.

7.2 Distributed Constraint Programming via MapReduce

Another contribution was to consider MapReduce as a framework that is not

only well-suited for huge databases but also for the huge search spaces that

Constraint Programming explores. We evolved a generic Solver that already

supported the definition of custom CSPs and ad hoc search methods. We made it

capable of (i) sampling the search trees, (ii) recording the search tree splits into

a text file, and (iii) restoring search in a specific search tree part/split. The text

file was supplied as input for MapReduce, whose Mappers were Solver instances

that could restore search in a given search tree split [70].

In the future, the most promising thing to do is to solve optimization CSPs,

which are a fertile ground for even superlinear speedups. In these problems the

goal is not to find one or all the solutions, but to get the best solution, according
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to specific criteria. To achieve this, each mapper-solver can employ the branch

and bound methodology which dynamically adds a new constraint (each time a

solution is found) that the next solution must be better than the one already found.

Additionally, when a new MapReduce round begins, all the mappers-solvers will

know the best solution found in the previous MapReduce round and adapt their

branch and bound strategies accordingly.

Furthermore, we can have superlinear speedups when trying to get just one

solution of a CSP and not all of them.

7.3 Relaxed constraint propagation: Less is more

An important contribution of this work is to give focus on the weaker consistency

levels (bounds consistency – BC) in Constraint Programming and to highlight their

advantages over “stronger” consistency levels (arc consistency – AC). If we take

it for granted that arc and bounds consistency have both equal asymptotic time

complexities, then two questions arise.

1. Why is BC often used in practice in Constraint Programming solvers?

2. When should we prefer BC over AC?

In current bibliography, answers to the first question are scarce and only based

on unpublished empirical observations. In any case, one can answer to the first

question by conducting experiments and finding examples where BC is more

efficient than AC. Indeed, in this work, we experimented with a broad range of

official CSPs and found many cases where BC is more efficient in practice.

7.3.1 Predicting the efficiency of relaxed consistency

The second question is more difficult, as it is addressed for every possible ad

hoc CSP. Our approach to answer it included the following steps.

• Introduce the algorithms for arc and bounds consistency enforcement and

prove that they take the same time in the worst case.

• Introduce a basic backtracking search algorithm and the search tree and

search path notions.

• Integrate consistency enforcement algorithms into the backtracking search

method.

• Compute the overall time complexity while descending a search tree path

and find the differentiations between maintaining AC and BC.

• Project the complexity to traverse a search path to the overall search tree

complexity.
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Following this approach, we produced some tight upper limits for AC and BC

time complexities in the context of search methods. We defined a criterion which,

based on the attributes of a CSP, predicts which of the two methodologies is likely

to solve it faster.

This new criterion gives us the freedom to select the consistency level (AC

or BC) just before solving a specific CSP. We are not obliged to use default

consistency levels when we build a Constraint Programming solver anymore. We

are now able to tailor the AC vs. BC selection to the particular parameters of each

CSP and thus make the overall search process more efficient [73].

In the future, this work can be naturally extended to answer the question why

even higher consistency levels than AC are “seldom used in practice” [5]. This is

another paradox, as there are a lot of very important publications for sophisticated

higher consistency levels. Just like in this work, we should develop criteria about

when to use higher consistency levels than AC and not completely ignore them.

Another natural future extension of this work will be to compare themaintenance

of generalized arc and bounds consistencies during search, which are enforced to

non-binary constraint networks. In this work, we considered only binary constraints,

i.e. only constraints between two variables. This was done for the sake of simplicity,

as every constraint involving more than two variables can be converted to binary

constraints [81]. After all, the notion of the arc, e.g. (𝑋1, 𝑋2), includes only two
variables.

On the other hand, 𝑛-ary constraints with 𝑛 > 2, i.e. constraints that involve
more than two variables, are quite common in practice and can be exploited to

speed up search. Such constraints are often expressive in the sense that it is more

elegant for example to mention AllDifferent(𝑋1, 𝑋2, 𝑋3) than 𝑋1 ≠𝑋2 ∧ 𝑋2 ≠𝑋3 ∧ 𝑋3 ≠𝑋1.
For 𝑛-ary constraints, we enforce either generalized arc consistency (GAC)

or generalized bounds consistency. It would be interesting to see if the behavior

of maintaining AC vs. BC during search remains the same for their generalized

variants.

7.3.2 A new relaxed consistency variant

Finally, we introduced 𝑘-bounds-consistency, a parameterized bounds con-
sistency variant [74]. Our new 𝑘-bounds-consistency was proved to be more

efficient for small 𝑘 values. Still, the exact specification of the best 𝑘 is different
for each different CSP instance. In the future, it would be interesting to automate

the process of finding the “golden mean” 𝑘.
Future perspectives also include proposing even looser consistency types

for the individual problems with too many variables, for which only local search

methods seem nowadays efficient [60]. Except for the domain size, are there any

other ways to limit—or augment—the constraint propagation level?

7.3.3 Toward one unified benchmarking

In 1997, Eugene Freuder, a Constraint Programming pioneer, stated that its

“holy grail” is that the user simply states the problem and the computer solves

it [34]. This, obviously, emphasizes on user experience. Today, after two decades
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of theoretical advances, the community still pursuits this “holy grail” [35]. If we

want to contribute toward this direction in the future, we should integrate and test

the existing theory (e.g. about various consistency levels, search methodologies,

etc.) into user-friendly solvers and take the decision to use a common testbed

with emphasis on real-life CSPs over artificial ones with obfuscated modelings.

In this direction, we can employ the MiniZinc language that allows a single

model of a CSP to be solved by multiple different solvers [62]. Furthermore,

the CSP instances of the “MiniZinc Challenge” competition can be used as a

benchmark e.g. to prove the efficiency of a consistency enforcement algorithm [87].

Nevertheless, in our consistency enforcement experiments we preferred to

use CSP instances defined using the XCSP3 format that is more low-level than

MiniZinc [14]. There were two reasons behind this choice.

• Many relevant consistency enforcement papers use the instances of the

XCSP3 library, and we wanted to be as close to the related work as possible.

• There is an XCSP3-core subset of the XCSP3 language [15]. XCSP3-core

contains the most essential constraints, and it is more tailored for competi-

tions and benchmarking than the original XCSP3 and MiniZinc languages.

XCSP3-core language and benchmarks are easier to be adopted by a mini-

solver used in a research paper.

However, there are some XCSP3 drawbacks that should be addressed too.

• As already mentioned, XCSP3 is more low-level than MiniZinc, which means

that it is less user-friendly.

• The default XCSP3 definitions of many CSP instances are obfuscated, as

they use table constraints.

To mitigate the above, toward a unified testbed to benchmark the new and old

consistency algorithms, a “MiniZinc-core” language and competition should be

established.
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