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Abstract—Constraint Programming constitutes a prominent
paradigm for solving time-consuming Constraint Satisfaction
Problems (CSPs). In this work, at first we model a generic
course scheduling problem as a CSP, that complies with
the International Timetabling Competition (ITC) standards.
Constraint Programming allowed us to search for a solution
via several state-of-the-art methodologies and compare them.
For the stochastic search methods, we propose new hybrid
semi-random heuristics. Second, we chose to maintain bounds
consistency during search to prune ‘no-good’ branches of the
search tree. We theoretically define new lightweight consistency
types, namely k-bounds-consistency, in order to speed up the
overall search procedure. Eventually, we process real world
data and show the efficiency of our proposal: While plain
backtracking produces poor results, constraint propagation
dramatically boosts the solutions quality, and can be ‘fine-
tuned’ in our adjustable schema to make it even faster.
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I. INTRODUCTION

Scheduling activities which depend on resources is a
common problem addressed for almost half a century [1].
A wide spectrum of techniques to cope with it have been
evolved so far [2].

A. Multidisciplinary Contributions to Timetabling

Automated timetabling is a common scheduling problem
that occurs in every educational institute. There have been
developed a lot of ways to solve it [3]. The similarities to
the problem of graph coloring were used to invent common
procedures to solve them both [4]. Timetabling was also
correlated with the general class of network flow problems
[5]. Other methods include clustering of the problem to
smaller sub-problems [6]. The application of case-based
reasoning to timetabling also gives promising results [7].

Because of the hardness of finding an optimum solution
to the problem, a lot of metaheuristic methods have been
used. In general, these methods begin from a state of the
variables of the problem, and try iteratively to reach another
state that is closer to a solution, i.e. that is better than the one
already found, if any. The disadvantage of these methods
is ‘sticking’ in local optima, but there are a lot of ways
to override them. Methods widely used in Artificial Intelli-
gence, such as simulated annealing [8], genetic algorithms
[9], and tabu search [10], were applied in this problem. Local

Search techniques have been recently evolved to produce
near optimal solutions [11].

A common way to implement applications in Artificial
Intelligence is to define the constraints of the problem in a
Constraint Programming framework with a solver that uses
Logic Programming [12], [13], or other environments [14].
To unify all these variations, common criteria have been
suggested to measure the efficiency of automated timetabling
applications [15].

There has been made great effort towards reducing the
computational time needed to construct a timetable. Nev-
ertheless, today the main obstacle for the spreading of
timetabling systems is lack of flexibility; in many cases
they cannot adapt to the different requirements of each ed-
ucational institute and the complicated constraints that may
exist. So, the main contribution of Constraint Programming
in this direction is the separation of the statement of the
problem and the mechanism that solves it [16]. This is the
key feature that made this Artificial Intelligence paradigm
popular to the programmers’ community and this is how
we faced automated timetabling in this work: We defined
explicitly the entities of the problem and we simplified the
constraints that connect them. Their simplicity makes the
whole problem portable to many solvers that use Constraint
Programming (CP) [17], as well as Constraint Logic Pro-
gramming (CLP) [18]. Besides, this framework makes it
easy to add new constraints or to modify existing ones,
without affecting the search implementation.

Our first contribution is the statement of the course
scheduling as a CSP. After the CSP has been defined—
including all of its variables and the optimization criteria—
several direct search methods are combined with other
propagation techniques and well-aimed heuristics to solve
it. In this context, we also propose new hybrid semi-random
heuristics and compare them with the systematic ones.

The Constraint Programming paradigm is ideal for ‘plug-
ging’ into our course scheduling CSP many different generic
search methods and heuristics, because the statement and
solution phases are completely independent, and we do not
have to declare the problem and its constraints from scratch.
This philosophy allowed us not only to make comparisons
between many search procedures on this demanding CSP,
but also to propose and test a new constraint propagation
schema.
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B. Constraint Propagation and Related Work

Roughly speaking, constraint propagation is a process
used to transfer the modifications of the variables of a
CSP across the constraint network, in order to make all the
variables and their assignments compatible to each other.
Intuitively, domino game is a mechanical equivalent to this
technique, where the tiles falling in turn symbolize the chain
variable assignments fired by constraint propagation.

In this context, a propagation algorithms series have been
evolved, such as AC-3, AC-5, AC-2001, etc., where ‘AC’
stands for ‘arc-consistency’ [19]. There exists a plethora
of ways to make one variable of a problem consistent to
another, as there are many consistency levels, with the most
prominent ones elaborated in Section V.

Propagation methods incorporate an event queue, con-
taining all the previous assignments/modifications to the
variables [20]. Each event in the queue is propagated to
the variables, in order to make them consistent to the
current assignments. For contemporary CSPs—like course
timetabling—with too many variables, this ‘communication’
between all the variables becomes inefficient and may result
into thrashing.

Related work leverages on limiting the queue itself, by
preventing the insertion of events, when either the distance
from the previous event is above a threshold, or the event
had limited impact on the variable that created it, i.e. when it
did not remove a certain proportion of possible values from
its domain [21].

So, the second contribution of this work targets towards
adjusting constraint propagation, in order to make it adapt-
able to search methods. We focused on the ‘tug of war’
between different consistency levels, and we proposed a
compromise. Instead of tampering with the event queue
itself and the propagation algorithms, we introduced a new
consistency level. The algebraic evidence was verified in
practice in the very challenging timetabling problem.

II. TIMETABLING: ENTITIES, PROPERTIES, RELATIONS

First of all, we typically define the critical entities in-
volved in course timetabling, and we elaborate on their
properties and the relations between them.

A. Days, Timeslots, and Periods

Let D be the number of days of the timetable; each day
has H timeslots. P defines a set {0, 1, . . . , D · H − 1}
that includes all the teaching periods. The actual duration
of a teaching period is of no interest for the timetabling
application. A teaching period cannot be divided.

B. Courses and Curricula

Let C be the set of courses, L the set of lectures and G
the set of groups of courses, also known as curricula. Each
group g ∈ G consists of courses (∀g, g ⊆ C), and each
course c ∈ C consists of one or more lectures ` ∈ L. This

hierarchy supports the following conditions that often occur
in academia:

1) Usually, a student attends a specific group of courses.
For example courses are grouped according to the
semester they belong to, or the general direction they
serve; e.g. we may have the groups ‘1st Semester
Courses,’ ‘Courses of Mathematical Science,’ etc. Two
courses that are members of the same group should not
be scheduled at the same time. The best thing that one
could do is to schedule the corresponding lectures of
each group as close as possible, so that the personal
timetables of most students have no idle periods.

2) Normally, each course is broken up into lectures, that
should be spread during the week. For each course ci,
there is a minimum desired number of days on which
the lectures will be distributed over the week, namely
mwd(ci), where mwd stands for minimum working
days.

3) The number of the lectures for a course is predefined
and given by the property dur(ci). There is also
a function named ‘course’ that maps L to C, i.e.
course(`) is the course that lecture ` belongs to.

It is noted that each course has the property na(ci) ⊆ P
which contains the periods when its lectures cannot been
given; ‘na’ stands for ‘unavailable.’ E.g. na(c2) = {1, 5}
means that course c2 will not be taught during periods 1
and 5.

The last given property for a course is the number of the
students that attend it, namely students(ci).

C. Teachers and Rooms

Certainly, each course should be provided a teacher/
professor and a (class)room. Let T be the set of teachers and
R the set of rooms; each room is represented by a different
integer. The property teach(ci) gives the responsible teacher
t ∈ T for each course ci ∈ C. The capacity of a classroom
r ∈ R is denoted capacity(r).

D. The Solution to the Problem

For each lecture `i ∈ L, we ask to find the necessary
timeslot and room. Conclusively, a solution to the problem
refers to the full definition of a function sol : L → P × R,
which maps each lecture to a period and a classroom.

III. FORMULATING COURSE TIMETABLING AS A CSP

We are now going to state the problem described above
as a Constraint Satisfaction Problem (CSP) [22]. A CSP
includes a set of constrained variables that may be simply
called variables; each of them corresponds to a set of values
called domain; we say that a constrained variable x has a
domain Dx. Constrained variables are connected to each
other through a set of constraints. In general, a constraint
which refers to specific constrained variables is the set of all
valid combinations of values that can be assigned to them.



E.g., for the variables x1 and x2 with domains Dx1
=

Dx2
= {0, 1, 2, 3}, the constraint of equality can be declared

as C({x1, x2}, {(0, 0), (1, 1), (2, 2), (3, 3)}). Although this
notation is as general as possible, in practice, i.e. in Con-
straint Programming, we use simple relations to describe
constraint networks. In the above example, the constraint
can be simply written as x1 = x2. In this work, we will only
use the constraint types implemented in many CSP solvers.

Finally, a solution to a CSP is a valid assignment of a
value to each variable, that does not violate the constraints.

A. Variables and Domains

The set X of constrained variables refers to the teaching
period of each lecture:

X = {xi | Dxi = P\na(course(`i)), `i ∈ L} . (1)

The other critical set R of constrained variables for this
timetabling problem includes the classrooms where the
lectures are given:

R = {cli | Dcli = R, `i ∈ L} . (2)

The rest of the constrained variables that will be used are
auxiliary.

B. Constraints for Lectures

As we have already stated all critical variables and their
domains, we are now going to build up the constraint
network. When we are interested in finding more than one
solution, the solver may output the same solution more than
once, if the problem has symmetries. One symmetry is the
‘swapping’ of two lectures `i and `j , when they belong to the
same course. To avoid this situation, we add the constraint:

xi < xj , ∀ `i, `j ∈ L ,
with i < j and course(`i) = course(`j) . (3)

C. Resources and Constraints

To understand our approach to the problem, we will
look upon teachers, classrooms, and groups of courses as
resources. Every resource is connected to a set of lessons.
In particular, for each teacher t ∈ T we have

Xt = {xi | xi ∈X , t = teach(course(`i))} (4)

and for each group of courses g ∈ G,

Xg = {xi | xi ∈X , course(`i) ∈ g} . (5)

The global constraint that has to be stated for all sets above
is the all-different, a constraint that is imposed over a set of
variables and is satisfied only if the variables are assigned
different values.

So, each resource can be supplied to at most one activity/
lecture during a teaching period. For example, Figure 1
displays a teacher t1 that gives three lectures `1, `2, and
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Figure 1. Teacher t1 as a resource

`3. The corresponding constrained variables must not be
assigned same values, in other words,

AllDifferent(Xt) , ∀t ∈ T , (6)

AllDifferent(Xg) , ∀g ∈ G . (7)

On the other hand, we have only one set of constrained
variables for the whole set of classrooms R. We define

XR = {yi | yi = xi +D ·H · cli, xi ∈X , cli ∈ R} . (8)

Every member of XR represents the time and space where a
lecture will take place. Expression xi+D ·H ·cli is the linear
representation of (xi, cli), as xi cannot exceed D · H . In
order to avoid having two-dimensional constrained variables
in our problem—which are more difficult to use—we did
this ‘trick’ of linearization. So we add another constraint

AllDifferent(XR) . (9)

To better understand the above constraint, see Fig. 2. We
have a two-dimensional representation of resource ‘class-
rooms,’ because one lecture can be assigned one period
from P and one classroom from R. In this figure, we
have time and space assignments for lectures `1 to `5; also,
D · H = |P | = 5 and |R| = 3. Any two lectures cannot
share the same period and classroom.

D. Objective Variable for Quality Criteria

In many solvers, a constrained variable is used to describe
the objective function. The objective variable as we call it,
represents the cost, or, better, the quality of the timetable.
In the International Timetabling Competition ITC-2007/08
four quality criteria q1, q2, q3, and q4 were mixed [23].

1) Room Capacity: Variable q1 quantifies the first quality
factor. It concerns the students that attend a lecture (e.g. `i),
when their number exceeds the capacity of the classroom
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Figure 2. Two-dimensional resource for the classrooms in R

(cli) that hosts this lecture. This factor is expressed as

q1 =
∑
`i∈L

∑
r∈R

students(course(`i))> capacity(r)

((
students(course(`i))− capacity(r)

)
·

bool( cli = r )
)

(10)

and should be minimized—as every quality factor qi. Note
that we take into account the terms with capacity(r) being
strictly less than students(course(`i)), otherwise the term is
not inserted into the sum. The expression ‘bool(condition)’
is a constrained variable with domain {0, 1}. If condition
is true, the variable equals to 1, otherwise it equals 0.

2) Room Stability: ITC-2007/08 specifies that every lec-
ture `i of the same course c should be hosted at the same
classroom; thus one student can easily remember where
to attend a specific course. For each different classroom—
except for the first—used for the course, one penalty point
is added to q2. In order to state this criterion, an auxiliary
constraint is first declared for every course c:

Roomsc = Inverse{Rc} ,
Rc = {cli | cli ∈ R, course(`i) = c} . (11)

The above constraint implies that the domain of Roomsc[r]
contains a positive number, if there exists a cli ∈ Rc, with
r ∈ Dcli , else Roomsc[r] = −1.1 Therefore, q2 is easily
defined as

q2 =
∑
c∈C

( ∑
room∈Roomsc

(
bool( room ≥ 0 )

)
− 1

)
. (12)

3) Distribution of Lectures During the Week: Another
goal is to evenly distribute the lectures of each course during

1Practically, the Inverse constraint is applied over arrays. If we see the
set Rc as an array, then Roomsc[r] will contain the indexes of all cli ∈ Rc

with r ∈ Dcli .

the week. Hence, we try to minimize

q3 =
∑
c∈C

mwd(c)−
∑

day∈Daysc

(
bool( day ≥ 0 )

) . (13)

The element Daysc[δ] is positive only if there exists a lecture
of c that is given on day δ. It is produced through the
following intermediate constraint:

Daysc = Inverse{d | d =
⌊xi
H

⌋
, xi ∈X , course(`i) = c} .

(14)
4) Isolated Lectures: We also need a metric for the

lectures belonging to a group of courses that are not adjacent
to any other lecture of the same group. The more adjacent
lectures we have, the better students’ personal timetables
will be constructed.

For each group, an auxiliary two-dimensional array of
boolean constrained variables named Busy will be built. If
Busyg[d][h] = 1, then a lecture of group g is given at hour
h on day d. Before creating this array, we construct another
array for each group of courses using again the ‘Inverse’
constraint:

Timetableg = Inverse(Xg) . (15)

The above Inverse constraint implies that the domain of
Timetableg[d ·H + h] contains a positive number, if there
exists a xi ∈ Xg , with (d · H + h) ∈ Dxi

. Therefore, we
add the following constraint for each day d and hour h

Busyg[d][h] = bool( Timetableg[d ·H + h] ≥ 0 ) . (16)

We observe that the two-dimensional array Busyg is a
‘timetable’ specific for g, that displays the hours it occupies.
When Busyg[d][h] = 1 and the next and previous timeslots
are 0, we have an isolated lecture:2

Isolatedg[d][h] = ¬Busyg[d][h− 1] ∧ Busyg[d][h]∧
¬Busyg[d][h+ 1] . (17)

So, the following sum gives the number of gaps for all teams.

q4 =
∑
g∈G

D−1∑
d=0

H−1∑
h=0

Isolatedg[d][h] . (18)

Now, we can add the four criteria defined—possibly
giving them appropriate weights—to construct the final
objective variable, i.e.

q = q1 + q2 + 5 · q3 + 2 · q4 . (19)

2We assume Busyg [d][h] = 0 when h is out of range, e.g. when it equals
−1 or H .



5) Optimization for School Timetables: The criteria de-
scribed are focused on groups of courses; the ‘objective’ is
to schedule the lectures of each of them as evenly (during
the week) and continuously (during every day) as possible.
This optimization goal is common in academic institutes.

When it comes to schools, the objective variable gets
different. Specifically, it is constructed in the same way but
it is focused on teachers. That is, all the formulae presented
above in this section will remain the same, except that every
‘g (∈ G)’ should be replaced by ‘t (∈ T )’. It is obvious
that all the effort is now given in optimizing the personal
timetables of every teacher.

IV. SEARCH

Having defined the CSP, we should now choose a way to
solve it. In general, we assign values to the variables of X
and R and check whether they satisfy the constraints. First
of all, heuristics are used to guide search towards a solution.

A. Heuristics

Search methods ‘consult’ with heuristics in order to
explore as soon as possible the most promising branches
of the search tree. When a search method has to choose
the next variable to instantiate and the value to assign to it,
it uses respectively variable ordering heuristics and value
ordering heuristics.

1) Variable Ordering Heuristics: We construct a heuristic
function that chooses the next uninstantiated constrained
variable xi ∈ X , that corresponds to lecture `i. We use
various ways to distinguish variables.
• We choose the variable xi that has the minimum domain

size |Dxi |; so variables with small domains are favored,
according to the first-fail heuristic [24].

• When we have a ‘tie,’ i.e. when the above criterion
gives two or more variables with same domain size, we
use another heuristic as tie-breaker, instead of choosing
a variable among them at random. In this case, we
choose the variable that is involved in the maximum
number of constraints, in line with the degree criterion.
We denote Exi

as the number of constraints involving
xi, and e as the maximum number of constraints.

If we combine the above two heuristics, we will produce the
expression

hi =
(
D ·H − |Dxi

|
)
· (e+ 1) + Exi

. (20)

|Dxi
| takes precedence over Exi

, because the latter cannot
exceed e. We negated |Dxi

|, because we seek for a minimum
value; note that it cannot exceed D ·H , so (D ·H − |Dxi

|)
is always positive.

2) A New Semi-random Variable Ordering Heuristic:
Stochastic search methods require to choose the next vari-
able at random, so we designed the corresponding random
heuristic. Actually, we went one step further by providing a

level of randomness, called rand. While rand approaches
zero, the heuristic becomes more random, but while rand
grows, the heuristic approximates the above two ones, in
Section IV-A1.

More specifically, we use the metric hi in (20), and we
transform it to h′i = hrandi , in order to give it more or less
strength, if rand→∞ or rand→ 0 respectively. Then we
construct the following sequence:

H0 = 0 ,

Hi =
h′i∑n
j=1 h

′
j

+Hi−1 , 1 ≤ i ≤ n .

From this sequence, we can produce n mutually exclusive
ranges:

Ii = [Hi−1, Hi) , 1 ≤ i ≤ n .

The union of all of these sets is [0, 1). Each Ii is propor-
tionally wide to h′i.

Almost every computer platform can provide us with
a random number uniformly selected from [0, 1). Conse-
quently, if we generate at random a value in [0, 1), we can
take the corresponding Ii, i.e. the corresponding xi. While
rand falls, the selection becomes more arbitrary.

3) Value Ordering Heuristics: Having found an uninstan-
tiated variable xi ∈ X , using one of the above heuristics,
we should assign to it a value from its domain. To do so, we
choose the value that, when assigned, it will provoke the less
reduction to the domains of the other values, than the rest
of the possible assignments. We also favour the assignment
of values that will reduce the solution cost/objective.

B. Search Methods and ‘Naxos’ Solver

The CSP defined took shape in our CSP solver, called
‘NAXOS’ [25]. NAXOS is a library for an object-oriented
programming environment, implemented in C++. It allows
the statement of CSPs having constrained variables with
finite domains containing integers.

The search engine incorporated in NAXOS is based on
the propagation of the modifications of the domains over
the constraint network. For example, the assignment of a
value to a constrained variable should make other variables
connected to it consistent with that value.

Moreover, the application developer that uses NAXOS can
create custom goals to be satisfied, and thus, he/she can
make search goal-driven and control it in the way he/she
likes. Special goals, namely OR-goals, define choice points
in search trees, i.e. they generate two branches: one left and
one right branch. If the left branch leads to a dead-end,
NAXOS backtracks to the choice point and continues to the
right branch. A dead-end is reached when the domain of
any variable becomes empty, e.g. when we have no time
slot available for a lecture, due to current assignments.

Hence, NAXOS supports a plethora of search methods
such as Depth First Search, Limited Discrepancy Search



[26], etc. In this work, we mainly use a Depth-bounded
Backtrack Search (DBS) method [27].

V. CONSISTENCY TYPES: ANALYSIS AND
IMPROVEMENTS

It has been shown that for many problems constraint
propagation procedure gives better results than ordinary
backtracking search methods [28]. This methodology sug-
gests that when we assign a value to a constrained variable,
or, generally, when we shrink its domain, we should enforce
some type of consistency to the constraint network, in order
to a priori prune ‘no-good’ branches of the search-tree.

A. Arc-Consistency

Arc-Consistency is the most well-known and older con-
sistency type.

Definition 1. We say that an arc (X,Y )—connecting vari-
ables of the constraint network—is arc-consistent iff for all
values x ∈ DX , there exists a value y ∈ DY such that the
constraint that connects the two variables is satisfied. When
every arc of the constraint network is arc-consistent, we say
that the constraint network is arc-consistent too.

Example 1. Let the constrained variables X and Y have
the domains DX = {5, 6, 8} and DY = {0, 1, 2, 3}. Say
that we have the constraint X = Y + 5. The arc (X,Y ) is
consistent, because for each x ∈ DX , there is a y ∈ DY ,
with x = y + 5.

However, the arc (Y,X) is inconsistent, because for y = 2
there is no support x ∈ DX , with x = y + 5 = 2 + 5 = 7.
In this case, in order to enforce arc-consistency, we must
remove 2 out of DY .

Lemma 1. Arc-consistency check and enforcement, also
called revision, for an arc (X,Y ), has worst time complexity
O(|DX | · |DY |) = O(d2), where d is the maximum domain
size in the CSP in question.

The proof is somehow trivial, as for each value x ∈ DX

we seek a support y ∈ DY .
Arc-consistency does not lead necessarily to a solution—

but if there is no arc-consistency, we are sure that we have
no solution—unless we combine it with a search method. Its
usefulness has to do with the reduction of the search space
that the search method explores.

B. Bounds-Consistency

Bounds-consistency is a weaker type of consistency that
requires that only the bounds of the domain of each variable
should have a support value in the domains of the variables
it is connected to via constraints [29].

Definition 2. A constrained variable X is bound-consistent3

with regard to variable Y , iff there exist values y1, y2 ∈ DY ,

3This definition of bounds-consistency appears in the bibliography as
bounds(D)-consistency too.
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Figure 3. Time needed to solve fourteen ITC datasets

such that the assignments (X ← minDX , Y ← y1) and
(X ← maxDX , Y ← y2) do not violate the constraints.

An assignment X ← v designates the restriction of the
domain DX to contain only the value v, i.e. DX = {v}.
Example 2. Let X and Y be constrained variables with
domains DX = {5, 6, 8} and DY = {1, 2, 3}, and, again,
the constraint X = Y + 5. There is no bounds-consistency,
as there is no pair (minDX , y), i.e. (5, y), with 5 = y+ 5,
because 0 6∈ DY .

But if the domain of X is shrunk to D′X = {6, 8}, then
we do have bounds-consistency enforcement. It is worth
mentioning that in this case we do not have arc-consistency,
because 2 ∈ DY does not have any support x ∈ DX , with
x = 2 + 5.

Lemma 2. Bounds-consistency revision of (X,Y ) has worst
time complexity O(d2).

Proof: Again, the revision of an arc/constraint includes
the check for support values and the consistency enforce-
ment. To check for the consistency we need O(2 · |DY |)
steps, as for each one of the two DX bounds, we try to find
a support value y ∈ DY .

But we must also consider what happens when a DX

bound is found inconsistent. In this case we should enforce
bounds-consistency by removing the inconsistent bound out
of DX and by repeating the above check for the new bound.
We may have O(|DX |) removals.

As a result, the overall revision complexity is O(|DX |) ·
O(2|DY |) = O(d2), as in arc-consistency.

What makes bounds-consistency a strategic choice in re-
lation to arc-consistency for CSPs with many variables, such
as common course scheduling, is the low space complexity.
While arc-consistency may modify/remove any value in
DX , bounds-consistency affects only the domain bounds.
In the first case we necessarily need an array to store the
domain, but in the latter one, only two values are modified
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in memory, i.e. the bounds.

C. The New k-Bounds-Consistency

We propose a looser consistency type, which enforces
bounds-consistency only to the variables with domain sizes
less or equal to k.

Definition 3. The arc/constraint (X,Y ) connecting the
variables X and Y is k-bounds-consistent, iff (X,Y ) is
bounds-consistent or |DX | > k.

Example 3. As in Example 2, let X , Y be constrained
variables with the corresponding domains DX = {5, 6, 8}
and DY = {1, 2, 3}, and it holds X = Y +5. The constraint
is not 5-bounds-consistent, because |DX | ≤ 5 and there is
not any support in DY for 5 ∈ DX . However, we do have
2-bounds-consistency, as |DX | > 2.

Lemma 3. k-bounds-consistency enforcement on an arc
(X,Y ) requires at most O(kd) steps.

Proof: Following the Lemma 2 proof, it takes O(|DX | ·
|DY |) time to enforce bounds-consistency. Nevertheless,
remember that k-bounds-consistency is enforced only when
|DX | ≤ k. As a consequence, k-bounds-consistency has a
O(k · d) worst case cost.

As k grows and approaches infinity, which is as a matter
of fact equivalent to d, k-bounds-consistency becomes evi-
dently identical to bounds-consistency. For low k values k-
bounds-consistency approximates a simple constraint check.

Maintaining 1-Bounds-Consistency during search is iden-
tical with a plain backtracking method, and no constraint
propagation is done. In this case 1-bounds-consistency de-
generates into a way to check if a constraint is satisfied:
We search to find a support value for the unique bound/
value of X; if no support is found, the unique value is
removed, and an ultimate inconsistency signal is broadcast.
This particular consistency type may also appear in ‘lazy’
propagation schemas, e.g. in local search contexts [30].

VI. EMPIRICAL RESULTS

To verify the algebraic formulations, we had to state the
problem in our generic CSP solver. All the source code is
freely available at http://di.uoa.gr/∼pothitos/ictai2012 with
the fourteen ITC-2007/08 real-world datasets included too.
The experiments were conducted on an HP computer with
an Intel dual-core E6750 processor at 2.66 GHz and 2 GB
of memory, running Ubuntu Linux 8.04. In accordance with
ITC standards, we have only 334 seconds in this machine in
order to find a solution.

A. Fine-Tuning Consistency Levels in Practice

The lightweight consistency proposed seems in theory
to ease the burden of the necessary revisions. But is it
competitive in demanding problems such as real-life course
timetabling, in relation to other consistency levels?

Figure 3 illustrates the time it took to construct a solution
and improve it as much as possible, for each of the fourteen
problem instances. It is obvious that for each one of them
there is a specific k, for which the Maintaining k-Bounds
Consistency methodology gives the best results. For k =
1, the methodology actually uses no constraint propagation;
it is a plain backtracking method, so the results are poor.
On the other hand, while k approximates infinity, i.e. while
k-bounds-consistency approaches plain bounds-consistency,
the results are not so poor, but are apparently worse than
using the ‘golden mean’ k value, which usually lies around
25.

Figure 4 displays the corresponding costs of the solutions
found for each one of the fourteen datasets. Conclusively, for
very small k values we not only found low quality solutions,
i.e. with high cost, but we consumed a lot of time to find
them. On the contrary, as k increases above the ‘golden
mean,’ the solution quality remains almost the same, but,
again, as we saw in Fig. 3, we need more time to reach it.
Every methodology we applied spent all the available time,
but constructed its own best solution at different time, as
shown in Fig. 3.

B. Employing Several Search Methods: Comparisons

Finally, it is time to exploit the many different generic
search methods available together with our CSP solver, in
a library called AMORGOS. In Figures 5 and 6, we see
how the solution costs are improved during the available
time. We present the results for the first two ITC dataset
instances, with the corresponding names ‘Fis0506-1’ and
‘Ing0203-2.’

Except for the Depth-bounded Backtrack Search (DBS)
method [27], we also utilized Iterative Broadening [31], as
well as the classic Depth First Search (DFS), along with
its stochastic variations that used the random heuristics in
Section IV-A2, for different rand values.

First of all, as rand increases, stochastic DFS may give
better results than normal DFS, and this is achieved by our

http://di.uoa.gr/~pothitos/ictai2012
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Figure 5. Objective optimization progress for the first ITC instance

semi-random heuristics. For small rand values, like 0.5, i.e.
when we have more randomness, the solutions are regularly
worse. In any case, DBS seems to outperform the rest of the
methods.

Note that the above results for the two ITC instances were
generated while maintaining 25-bounds-consistency during
search. Besides, 25 appeared to be the best k value in many
instances.

VII. CONCLUSIONS AND PERSPECTIVES

Constraint Programming is a tried paradigm to solve
optimization problems. We presented an effective application
to the timetabling problem. The CSP formulation allowed us
to exploit many generic search techniques, as the statement
of the problem and the search of the solution are independent
steps in the philosophy of Constraint Programming. So,
one can even further experiment with other, modern or old,
stochastic or systematic search methods and combine them.
The statement of the problem will remain the same, unless
one wants to insert new constraints, or make it more generic,
if possible.

Amongst the methodologies we used, we focused on pa-
rameterizing bounds-consistency. The k-bounds-consistency
was proved more efficient for small k values. Still, the exact
specification of the best k is different for each different CSP
instance. In future, it would be interesting to automate the
process of finding the ‘golden mean’ k. Another tempting
question is: When it is better to exploit arc-consistency and
to what extend?

Future perspectives also include proposing even looser
consistency types for the individual problems with too many
variables, for which only local search methods seem nowa-
days efficient [32]. Finally, except for the domain size, are
there any other ways to limit—or augment—the constraint
propagation level?
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