
Flexible Management of Large-Scale
Integer Domains in CSPs

Nikolaos Pothitos and Panagiotis Stamatopoulos

Department of Informatics and Telecommunications,
University of Athens,

Panepistimiopolis, 157 84 Athens, Greece
{pothitos,takis}@di.uoa.gr

Abstract. Most research on Constraint Programming concerns the (ex-
ponential) search space of Constraint Satisfaction Problems (CSPs) and
intelligent algorithms that reduce and explore it. This work proposes a
different way, not of solving a problem, but of storing the domains of its
variables, an important—and less focused—issue especially when they
are large. The new data structures that are used are proved theoretically
and empirically to adapt better to large domains, than the commonly
used ones. The experiments of this work display the contrast between
the most popular Constraint Programming systems and a new system
that uses the data structures proposed in order to solve CSP instances
with wide domains, such as known Bioinformatics problems.

Key words: CSP domain, Bioinformatics, stem-loop detection

1 Introduction

Constraint Programming is an Artificial Intelligence area that focuses on solving
CSPs in an efficient way. A CSP is a triplet containing variables, their domains
(i.e. set of values) and constraints between variables. The simplicity of this def-
inition makes Constraint Programming attractive to many Computer Science
fields, as it makes it easy to express a variety of problems.

When it comes to solving a CSP, the main problem that we face is the expo-
nential time needed, in the general case. The space complexity comes in second
place, as it is polynomial in the size (usually denoted d) of the largest domain.
But is O(d) the best space—and therefore time—complexity we can achieve
when we have to store a domain? Is it possible to define a lower bound for this
complexity? Memory management is a crucial factor determining a Constraint
Programming system speed, especially when d is too big.

Gent et al. have recently described data structures used to propagate the
constraints of a CSP [3]. To the best of our knowledge, the representation of
a domain itself has not yet been the primary sector of interest of a specific
publication in the area. Nevertheless, Schulte and Carlsson in their Constraint
Programming systems survey [7] defined formally the two most popular data
structures that can represent a finite set of integers:



Bit Vector. Without loss of generality, we suppose that a domain D contains
only positive integer values. Let a be a bit array. Then the value v belongs
to D, if and only if a[v] = 1. Bit vector variants are implemented in many
Constraint Programming solvers [1, 2].

Range Sequence. Another approach is to use a sequence of ranges. Formally,
D is ‘decomposed’ into a set {[a1, b1], . . . , [an, bn]}, such that ∪i[ai, bi] = D. A
desired property for this sequence is to be ordered and the shortest possible,
i.e. [ai, bi]∩ [aj , bj ] = ∅, ∀i 6= j. In this case δ denotes the number of ranges.

A more simple data structure than the two above, stores only the bounds of D.
E.g., for the domain [1..100000]1 we store only two numbers in memory: 1 and
100000. Obviously, this is an incomplete representation for the non-continuous
domains (e.g. [1..3 5..9]). It is therefore incompatible with most algorithms
designed for CSPs; only specific methodologies can handle it [11].

On the other hand, for the above domain [1..100000], a bit vector would
allocate 100,000 bits of memory, although it could be represented by a range
sequence using only two memory words. A range sequence can be implemented
as a linked list, or as a binary tree, so it is costlier to search for a value in it.

In this work we study the trade-off between memory allocation cost and
time consuming operations on domains. A new way of memory management
that seeks to reduce the redundant space is proposed. The new algorithms and
data structures are shown to perform well, especially on problems which contain
large domains. Such problems eminently occur in Bioinformatics, a science that
aims at extracting information from large genetic data.

2 Efficient Domain Implementations

While attempting to reduce the space complexity, we should not neglect time
complexity. Except for memory allocation, a constraint programming system is
responsible for two other basic operations that are executed many times on a
domain:

1. Search whether a range of values is included in it.
2. Removal of a range of values from a domain.

Note that addition of values is unnecessary; the domain sizes only decrease due
to constraint propagation or assignments.

Search or removal of a range of w values costs O(w) time in a bit vector;
if w = 1 this structure is ideal. The same operations in a range sequence that
has been implemented as a linked list [7] require O(δ) steps, while the space
complexity is much less (O(δ) too) than the bit vector’s one (O(d)). A wiser
choice would be to implement the range sequence as a binary search tree, with
an average search/removal complexity O(log δ), and the space complexity left
unaffected.

1 [a..b] denotes the integer set {a, a + 1, . . . , b}.



However, the subtraction of a range of values from the tree is complicated. (It
roughly performs two traversals and then joins two subtrees.) This is undesirable,
not only for the time it spends, but also for the many modifications that are
done on the structure. The number of modifications is crucial because they
are recorded in order to be undone when a Constraint Programming system
backtracks, that is when it restores a previous (or the initial) state of the domains,
in order to restart the process of finding a solution to a CSP (through other
paths).

2.1 Gap Intervals Tree Representation

To make things simpler and more efficient, a

[-5..0]

[-∞..-17]

[10..10] [999..1050]

[2001..+∞]

[100..102]

Fig. 1. A tree with the gaps
of the domain [−16..−6 1..9
11..99 103..998 1051..2000]

binary search tree of gap ranges was imple-
mented. The advantage of this choice is that
the subtraction of a range of values is faster,
as it affects only one tree node (i.e. it inserts
or modifies only one node).

For example the domain [9..17 44.. 101]
is described by three gaps: [−∞..8], [18..43]
and [102..+∞]. Figure 1 depicts the gaps of
a domain that are arranged as a binary search
tree. A node of the tree apparently contains
the first and the last gap value, and pointers
to the left and right ‘children.’

2.2 Search/Delete Algorithm

Another advantage of this approach is that the two basic operations on a domain
are performed by a single algorithm named SearchGap.2 This function accepts
four arguments (gapNode, newStartV al, newEndV al, removeInterval).

– If removeInterval is 1, the range [newStartV al..newEndV al] is deleted
from the domain, which is represented by a tree whose root is gapNode.

– If removeInterval is 0, the function returns a node of the tree that contains
at least one element of [newStartV al..newEndV al]. If there does not exist
such a node that meets this criterion, then the function returns an empty
node. Thus, in case we want to check whether a range [a..b] belongs to D,
we call SearchGap(root, a, b, 0):
• If the returned node is empty, then [a..b] ⊆ D;
• otherwise [a..b] * D.

The above procedures manipulate the data structure as a normal binary search
tree; the insertions of gaps and the search for specific values is done in logarithmic
time as we traverse a path from the root gapNode to an internal node.

While a Constraint Programming system tries to find a solution, it only adds
gaps to the tree. During gap insertions the algorithm seeks to merge as many
gap nodes as possible in order to keep the tree short.

2 Available at http://www.di.uoa.gr/~pothitos/setn2010/algo.pdf



3 Empirical Results

Although the above domain implementation is compatible with the ordinary CSP
formulation, algorithms and constraint propagation methodologies [6], it is rec-
ommended especially when we have to solve problems with large non-continuous
domains. Such problems naturally occur in Bioinformatics, so we are going to
apply the memory management proposed to them.

3.1 A Sequence Problem

Each human cell contains 46 chromosomes; a chromosome is part of our genetic
material, since it contains a sequence of DNA nucleotides. There are four types of
nucleotides, namely A, T, G and C. (A = adenine, T = thymine, G = guanine, C
= cytosine.) A chromosome may include approximately 247.2 million nucleotides.

A Simple Problem Definition. Suppose that we want to ‘fit’ in a chromosome
a sequence of four cytosines C1, C2, C3, C4 and a sequence of four guanines
G1, G2, G3, G4 too. Ci and Gi designate the positions of the corresponding
nucleotides in the DNA chain; the initial domain for a position is [1..247200000].
We assume the first sequence grows geometrically with Ci = bCi+1/99c and the
second sequence is the arithmetic progression Gi+1 = Gi + 99.

Pitfalls While Solving. This naive CSP, which is limited to only eight con-
straint variables, may become. . . difficult, if we do not properly manage the
domains that contain millions of values. So, we evolved the data structures of
an existing Constraint Programming library and observed their behaviour in
comparison with two popular systems.3

Naxos. At first, we integrated the gap intervals tree described into Naxos
Solver [5]. Naxos is a library for an object-oriented programming environment;
it is implemented in C++. It allows the statement of CSPs having constrained
variables with finite domains containing integers.

The solution4 for the naive problem described was found immediately, using
3 MB of memory. All the experiments were carried out on a Sun Blade computer
with an 1.5 GHz SPARC processor and 1 GB of memory.

ECLiPSe. On the same machine, however, it took three seconds for the con-
straint logic programming system ECLiPSe version 5.105 [2] to find the same
solution, using 125 MB of memory, as it implements a bit vector variant to store

3 The datasets and the experiments source code—for each Constraint Programming
system we used—are available at http://www.di.uoa.gr/~pothitos/setn2010

4 The first solution includes the assignments C1 = 1, C2 = 99, C3 = 9801, C4 =
970299, G1 = 2, G2 = 101, G3 = 200 and G4 = 299.

5 We used the ECLiPSe library ‘ic’ that targets ‘Interval Constraints.’



0

2

4

6

8

10

12

14

4 24 44 64 84 194 394 594 794 994

T
im

e
 (

m
in

u
te

s
)

Guanines

ECLiPSe
ILOG

Naxos

(a) Time needed to find a solution

 1

 10

 100

 1000

 10000

4 24 44 64 84 194394594794994

S
p
a

c
e

 (
M

B
)

Guanines

ECLiPSe
ILOG

Naxos

(b) Memory space allocated

Fig. 2. The resources used by Constraint Programming systems as the problem scales

the domains. If we add one more nucleotide to the problem (i.e. one more con-
straint variable) the program will be terminated due to stack overflow. This
happens because the default stack size is limited, so in order to continue with
the following experiments, we increased it manually.

Ilog. Ilog Solver version 4.4 [4], a well-known C++ Constraint Programming
library, needs treble time (about ten seconds) to find the solution in comparison
with ECLiPSe, but it consumes almost the same memory.

Scaling the Problem. A simple way to scale the problem is to add more
guanines in the corresponding sequence. Figure 2 illustrates the time and space
that each system spends in order to reach a solution.

Before even adding a hundred nucleotides, ECLiPSe and Ilog Solver ran
out of resources, as they had already used all the available physical and virtual
memory. On the other hand, Naxos scales normally, as it benefits from the
proposed domain representation, and requires orders of magnitude less memory.
The lower price of allocating space makes the difference.

3.2 RNA Motifs Detection Problem

In the previous problem we created a nucleotide sequence, but in Bioinformat-
ics it is more important to search for specific nucleotide patterns/motifs inside
genomes, i.e. the nucleotide chains of a specific organism.

We can focus on a specific pattern that describes the way that an RNA
molecule folds back on itself, thus formulating helices, also known as stem-
loops [10]. A stem-loop consists of a helix and a region with specific characters
from the RNA alphabet [9].

In contrast to Ilog Solver, Naxos Solver extended with the proposed
memory management is able to solve this problem for the bacterium Escherichia
coli genome, which is available through the site of MilPat, a tool dedicated to
searching molecular motifs [8].



4 Conclusions and Further Work

In this work, it has been shown that we can achieve a much better lower memory
bound for the representation of a domain, than the actual memory consumption
of Constraint Programming systems. An improved way of storing a domain,
through new data structures and algorithms was proposed. This methodology
naturally applies to various problems with wide domains, e.g. Bioinformatics
problems that come along with large genome databases.

In future, hybrid data structures can contribute towards the same direction.
For example, variable size bit vectors could be integrated into binary tree nodes.
Everything should be designed to be as much generic as possible, in order to
exploit at any case the plethora of known algorithms for generic CSPs.

Acknowledgements. This work is funded by the Special Account Research
Grants of the National and Kapodistrian University of Athens, in the con-
text of the project ‘C++ Libraries for Constraint Programming’ (project no.
70/4/4639).

We would also like to thank Stavros Anagnostopoulos, a Bioinformatics ex-
pert, for his valuable help in our understanding of various biological problems
and data.

References

1. Codognet, P., Diaz, D.: Compiling constraints in clp(FD). The Journal of Logic
Programming 27(3), 185–226 (1996)

2. ECLiPSe constraint programming system. http://eclipse-clp.org (2008)
3. Gent, I.P., Jefferson, C., Miguel, I., Nightingale, P.: Data structures for generalised

arc consistency for extensional constraints. In: AAAI’07: 22nd National Conf. on
Artificial Intelligence, Vancouver. pp. 191–197. AAAI Press, Menlo Park (2007)

4. ILOG S.A.: ILOG Solver 4.4: User’s Manual (1999)
5. Pothitos, N.: Naxos Solver. http://www.di.uoa.gr/~pothitos/naxos (2009)
6. Sabin, D., Freuder, E.C.: Contradicting conventional wisdom in constraint satis-

faction. In: PPCP’94: 2nd Int’l Workshop on Principles and Practice of Constraint
Progr., Washington. LNCS, vol. 874, pp. 125–129. Springer, Heidelberg (1994)

7. Schulte, C., Carlsson, M.: Finite domain constraint programming systems. In:
Handbook of Constr. Programming, pp. 495–526. Elsevier Science, Amsterdam
(2006)

8. Thébault, P.: MilPat’s user manual. MilPat.pdf at http://carlit.toulouse.

inra.fr/MilPat (2006)
9. Thébault, P., de Givry, S., Schiex, T., Gaspin, C.: Searching RNA motifs and their

intermolecular contacts with constraint networks. Bioinformatics 22(17), 2074–
2080 (2006)

10. Watson, J., Baker, T., Bell, S., Gann, A., Levine, M., Losick, R.: Molecular Biology
of the Gene, chap. 6. Pearson/Benjamin Cummings, 5th edn. (2004)

11. Zytnicki, M., Gaspin, C., Schiex, T.: A new local consistency for weighted CSP
dedicated to long domains. In: SAC ’06: Proceedings of the 2006 ACM symposium
on Applied computing. pp. 394–398. ACM, New York, NY, USA (2006)


